Program Easily Converts Molecules to 3D Models for 3D Printing, Virtual and Augmented Reality — from 3dprint.com

Excerpt:

At North Carolina State University, Assistant Professor of Chemistry Denis Fourches uses technology to research the effectiveness of new drugs. He uses computer programs to model interactions between chemical compounds and biological targets to predict the effectiveness of the compound, narrowing the field of drug candidates for testing. Lately, he has been using a new program that allows the user to create 3D models of molecules for 3D printing, plus augmented and virtual reality applications.

RealityConvert converts molecular objects like proteins and drugs into high-quality 3D models. The models are generated in standard file formats that are compatible with most augmented and virtual reality programs, as well as 3D printers. The program is specifically designed for creating models of chemicals and small proteins.

 

 

 

 

 

 

Mozilla just launched an augmented reality app — from thenextweb.com by Matthew Hughes

Excerpt:

Mozilla has launched its first ever augmented reality app for iOS. The company, best known for its Firefox browser, wants to create an avenue for developers to build augmented reality experiences using open web technologies, WebXR, and Apple’s ARKit framework.

This latest effort from Mozilla is called WebXR Viewer. It contains several sample AR programs, demonstrating its technology in the real world. One is a teapot, suspended in the air. Another contains holographic silhouettes, which you can place in your immediate vicinity. Should you be so inclined, you can also use it to view your own WebXR creations.

 

 

Airbnb is replacing the guest book with augmented reality — from qz.com by Mike Murphy

Excerpt:

Airbnb announced today (Dec.11) that it’s experimenting with augmented- and virtual-reality technologies to enhance customers’ travel experiences.

The company showed off some simple prototype ideas in a blog post, detailing how VR could be used to explore apartments that customers may want to rent, from the comfort of their own homes. Hosts could scan apartments or houses to create 360-degree images that potential customers could view on smartphones or VR headsets.

It also envisioned an augmented-reality system where hosts could leave notes and instructions to their guests as they move through their apartment, especially if their house’s setup is unusual. AR signposts in the Airbnb app could help guide guests through anything confusing more efficiently than the instructions hosts often leave for their guests.

 

 

This HoloLens App Wants to Kickstart Collaborative Mixed Reality — from vrscout.com by Alice Bonasio

Excerpt:

Now Object Theory has just released a new collaborative computing application for the HoloLens called Prism, which takes many of the functionalities they’ve been developing for those clients over the past couple of years, and offers them to users in a free Windows Store application.

 

 

 

 

Virtual and Augmented Reality to Nearly Double Each Year Through 2021 — from campustechnology.com by Joshua Bolkan

Excerpt:

Spending on augmented and virtual reality will nearly double in 2018, according to a new forecast from International Data Corp. (IDC), growing from $9.1 billion in 2017 to $17.8 billion next year. The market research company predicts that aggressive growth will continue throughout its forecast period, achieving an average 98.8 percent compound annual growth rate (CAGR) from 2017 to 2021.

 

 

A look at the new BMW i3s in augmented reality with Apple’s ARKit — from electrek.co by Fred Lambert

 

 

 

 

Scope AR brings remote video tech support calls to HoloLens — from by Dean Takahashi

Excerpt:

Scope AR has launched Remote AR, an augmented reality video support solution for Microsoft’s HoloLens AR headsets.

The San Francisco company is launching its enterprise-class AR solution to enable cross-platform live support video calls.

Remote AR for Microsoft HoloLens brings AR support for field technicians, enabling them to perform tasks with better speed and accuracy. It does so by allowing an expert to get on a video call with a technician and then mark the spot on the screen where the technician has to do something, like turn a screwdriver. The technician is able to see where the expert is pointing by looking at the AR overlay on the video scene.

 

 

 

 

Virtual Reality: The Next Generation Of Education, Learning and Training — from forbes.com by Kris Kolo

Excerpt:

Ultimately, VR in education will revolutionize not only how people learn but how they interact with real-world applications of what they have been taught. Imagine medical students performing an operation or geography students really seeing where and what Kathmandu is. The world just opens up to a rich abundance of possibilities.

 

 

 

From DSC:

After looking at the items below, I wondered…

How soon before teachers/professors/trainers can quickly reconfigure their rooms’ settings via their voices? For example, faculty members will likely soon be able to quickly establish lighting, volume levels, blinds, or other types of room setups with their voices. This could be in addition to the use of beacons and smartphones that automatically recognize who just walked into the room and how that person wants the room to be configured on startup.

This functionality is probably already here…I just don’t know about it yet.

 


Somfy Adds Voice Control for Motorized Window Coverings with Amazon Alexa — form ravepubs.com by Sara Abrons


 

Also see:

 


 

 

Udemy for Business Unveils Team Plan, a New Learning Product Designed Specifically for Small & Midsize Businesses — from globenewswire.com
Team Plan enables organizations of any size to invest in their employees’ skills development by providing quick, easy access to top-rated courses without the hassle of contracts

Excerpt:

SAN FRANCISCO, Dec. 07, 2017 (GLOBE NEWSWIRE) — Udemy, the global marketplace for learning and teaching online, today introduced Team Plan, a new corporate learning product from Udemy for Business designed specifically to help teams of 5-20 employees master new skills. With Team Plan, managers are able to easily purchase subscriptions to a curated selection of more than 2,000 top courses from the Udemy marketplace for their team and immediately gain access to learning content without a time-consuming contracting process.

Udemy is unveiling Team Plan at a time when more workers are feeling pressure to keep up with changing job requirements. A recent Udemy survey revealed that nearly 80% of Americans agree there is a skills gap, and more than a third (35%) say it affects them personally. More than a quarter of U.S. employees also believe that employers should take responsibility for reskilling the workforce. Team Plan is an easy-to-use and affordable subscription-based solution that lets internal departments and small businesses offer employees on-demand access to quality learning content that they can use to gain new skills and apply what they learn immediately.

 

 

 

Amazon Intros Alexa for Business — from campustechnology.com by Rhea Kelly

Excerpt:

Amazon Web Services today announced Alexa for Business, a new service that provides voice control for office tasks. The Alexa intelligent assistant can help start conference calls, control conference room equipment, schedule meetings, keep track of tasks, notify IT of an equipment issue or reorder supplies, the company noted in a news announcement. The service can also be customized to voice-enable an organization’s specific IT applications and office systems.

 

Also see:

 

Shared devices

 

 

EDUCAUSE 2017: Microsoft VP Praises the Power of Artificial Intelligence — from edtechmagazine.com
Artificial intelligence and connected systems advancements are creating a foundation where higher education can use insights and data to drive more efficient campus management, Microsoft’s Anthony Salcito explains.

 

 

 

Analysts and AI: A winning combination — from information-age.com
Artificial intelligence is crucial in helping analysts achieve more in day-to-day operations, and drive innovation

Excerpt:

A Capgemini and LinkedIn study of 1,000 companies with revenue of $500 million+ reported that 2 in 3 jobs being created as a result of AI were at management level, and of those that have implemented the technology at scale, 89% believe complex jobs will be made easier, and 88% say humans and machines will co-exist within their business.

 

 

 

 

 

 

 

 

Robots in the Classroom: How a Program at Michigan State Is Taking Blended Learning to New Places — from news.elearninginside.com by Henry Kronk; with thanks to my friend and colleague, Mr. Dave Goodrich over at MSU, for his tweet on this.

Excerpt:

Like many higher education institutions, Michigan State University offers a wide array of online programs. But unlike most other online universities, some programs involve robots.

Here’s how it works: online and in-person students gather in the same classroom. Self-balancing robots mounted with computers roll around the room, displaying the face of one remote student. Each remote student streams in and controls one robot, which allows them to literally and figuratively take a seat at the table.

Professor Christine Greenhow, who teaches graduate level courses in MSU’s College of Education, first encountered these robots at an alumni event.

“I thought, ‘Oh I could use this technology in my classroom. I could use this to put visual and movement cues back into the environment,’” Greenhow said.

 

 

From DSC:
In my work to bring remote learners into face-to-face classrooms at Calvin College, I also worked with some of the tools shown/mentioned in that article — such as the Telepresence Robot from Double Robotics and the unit from Swivl.  I also introduced Blackboard Collaborate and Skype as other methods of bringing in remote students (hadn’t yet tried Zoom, but that’s another possibility).

As one looks at the image above, one can’t help but wonder what such a picture will look like 5-10 years from now? Will it picture folks wearing VR-based headsets at their respective locations? Or perhaps some setups will feature the following types of tools within smaller “learning hubs” (which could also include one’s local Starbucks, Apple Store, etc.)?

 

 

 

 

 

 

From DSC:
In this video, I look at how the pace of change has changed and I also provide some examples that back up this assertion. I end with a series of relevant questions, especially for those of us working within higher education.

What are we doing to get ready for the massive change that’s heading our way?

 

 

Dougiamas shares some #’s about Moodle’s results, future. MoodleMoot US 2017 – Miami — from moodlenews.com

Excerpt:

The projects Moodle HQ is leading from now on, MoodleCloud, Moodle.net, Learn Moodle, and the learning platform itself, as well as a new “Moodle Services” with details to come, are also part of Dougiamas’ goal to make Moodle a complete source, rather than just a software program, in the minds of users everywhere.

MoodleCloud has 25,000 sites. He admits it is not a product for large organizations, “not that it has stopped people from trying.”

Moodle.net is one of the areas with the most active development. Dougiamas suggested it will feature a sort of “social network for teachers” that they can access from their institutional Moodle sites or use as a content exchange. It will have its own app.

 

 

 

High-Tech, High Touch: Digital Learning Report and Workbook, 2017 Edition — from Intentional Futures, with thanks to Maria Andersen on Linkedin for her posting therein which was entitled, “Spectrums to Measure Digital Learning
Excerpt (emphasis DSC):

Our work uncovered five high-tech strategies employed by institutions that have successfully implemented digital learning at scale across a range of modalities. The strategies that underscore the high-tech, high-touch connection are customizing through technology, leveraging adaptive courseware, adopting cost-efficient resources, centralizing course development and making data-driven decisions.

Although many of the institutions we studied are employing more than one of these strategies, in this report we have grouped the institutional use cases according to the strategy that has been most critical to achieving digital learning at scale. As institutional leaders make their way through this document, they should watch for strategies that target challenges similar to those they hope to solve. Reading the corresponding case studies will unpack how institutions employed these strategies effectively.

Digital learning in higher education is becoming more ubiquitous as institutions realize its ability to support student success and empower faculty. Growing diversity in student demographics has brought related changes in student needs, prompting institutions to look to technology to better serve their students. Digital courseware gives institutions the ability to build personalized, accessible and engaging content. It enables educators to provide relevant content and interventions for individual students, improve instructional techniques based on data and distribute knowledge to a wider audience (MIT Office of Digital Learning, 2017).

PARTICIPATION IN DIGITAL LEARNING IS GROWING
Nationally, the number of students engaged in digital learning is growing rapidly. One driver of this growth is rising demand for distance learning, which often relies on digital learning environments. Distance learning programs saw enrollment increases of approximately 4% between 2015 and 2016, with nearly 30% of higher education students taking at least one digital distance learning course (Allen, 2017). Much of this growth is occurring at the undergraduate level (Allen, 2017). The number of students who take distance learning courses exclusively is growing as well. Between 2012 and 2015, both public and private nonprofit institutions saw an increase in students taking only distance courses, although private, for-profit institutions have seen a decrease (Allen, 2017).

 

 

 

 

 

 

 

Augmented reality will transform city life — from venturebeat.com by Michael Park

Excerpts:

I’ve interviewed three AR entrepreneurs who explain three key ways that AR is set to transform urban living.

  • The real world will be indexed
  • Commuting will be smarter and safer
  • Language will be less of a barrier

 

 

 

Virtual Reality Devices – Where They Are Now and Where They’re Going — from iqsdirectory.com

Excerpts:

The questions now are:

  • What are the actual VR devices available ?
  • Are they reasonably priced?
  • What do they do?
  • What are they going to do?

We try to answer those questions [here in this article].

In this early stage, the big question becomes, “What’s next?”.

  • Integration of non-VR devices with VR users
  • Move away from needing a top-notch PC (or any PC)
  • Controllers will be your hands

 

 

Alibaba-backed augmented reality start-up makes driving look like a video game — from cnbc.com by Robert Ferris

  • WayRay makes augmented reality hardware and software for cars and drivers.
  • The company won a start-up competition at the Los Angeles Auto Show.
  • WayRay has also received an investment from Alibaba.

 

 

WayRay’s augmented reality driving system makes a car’s windshield look like a video game. The Swiss-based company that makes augmented reality for cars won the grand prize in a start-up competition at the Los Angeles Auto Show on Tuesday. WayRay makes a small device called Navion, which projects a virtual dashboard onto a driver’s windshield. The software can display information on speed, time of day, or even arrows and other graphics that can help the driver navigate, avoid hazards, and warn of dangers ahead, such as pedestrians. WayRay says that by displaying information directly on the windshield, the system allows drivers to stay better focused on the road. The display might appear similar to what a player would see on a screen in many video games. But the system also notifies the driver of potential points of interest along a route such as restaurants or other businesses.

 

 

 

HTC’s VR arts program brings exhibits to your home — from engadget.com by Jon Fingas
Vive Arts helps creators produce and share work in VR.

Exerpt:

Virtual reality is arguably a good medium for art: it not only enables creativity that just isn’t possible if you stick to physical objects, it allows you to share pieces that would be difficult to appreciate staring at an ordinary computer screen. And HTC knows it. The company is launching Vive Arts, a “multi-million dollar” program that helps museums and other institutions fund, develop and share art in VR. And yes, this means apps you can use at home… including one that’s right around the corner.

 

 

 

VR at the Tate Modern’s Modigliani exhibition is no gimmick — from engadget.com by Jamie Rigg
‘The Ochre Atelier’ experience is an authentic addition.

Excerpt:

There are no room-scale sensors or controllers, because The Ochre Atelier, as the experience is called, is designed to be accessible to everyone regardless of computing expertise. And at roughly 6-7 minutes long, it’s also bite-size enough that hopefully every visitor to the exhibition can take a turn. Its length and complexity don’t make it any less immersive though. The experience itself is, superficially, a tour of Modigliani’s last studio space in Paris: a small, thin rectangular room a few floors above street level.

In all, it took five months to digitally re-create the space. A wealth of research went into The Ochre Atelier, from 3D mapping the actual room — the building is now a bed-and-breakfast — to looking at pictures and combing through first-person accounts of Modigliani’s friends and colleagues at the time. The developers at Preloaded took all this and built a historically accurate re-creation of what the studio would’ve looked like. You teleport around this space a few times, seeing it from different angles and getting more insight into the artist at each stop. Look at a few obvious “more info” icons from each perspective and you’ll hear narrated the words of those closest to Modigliani at the time, alongside some analyses from experts at the Tate.

 

 

 

Real human holograms for augmented, virtual and mixed reality — from 8i.com; with thanks to Lisa Dawley for her Tweet on this
Create, distribute and experience volumetric video of real people that look and feel as if they’re in the same room.

 

 

 

Next-Gen Virtual Reality Will Let You Create From Scratch—Right Inside VR — from autodesk.com by Marcello Sgambelluri
The architecture, engineering and construction (AEC) industry is about to undergo a radical shift in its workflow. In the near future, designers and engineers will be able to create buildings and cities, in real time, in virtual reality (VR).

Excerpt:

What’s Coming: Creation
Still, these examples only scratch the surface of VR’s potential in AEC. The next big opportunity for designers and engineers will move beyond visualization to actually creating structures and products from scratch in VR. Imagine VR for Revit: What if you could put on an eye-tracking headset and, with the movement of your hands and wrists, grab a footing, scale a model, lay it out, push it, spin it, and change its shape?

 

 

 

How artificial intelligence could transform government — from Deloitte University Press
Cognitive technologies have the potential to revolutionize the public sector—and save billions of dollars

Excerpt:

The rise of more sophisticated cognitive technologies is, of course, critical to that third era, aiding advances in several categories:

  • Rules-based systems capture and use experts’ knowledge to provide answers to tricky but routine problems. As this decades-old form of AI grows more sophisticated, users may forget they aren’t conversing with a real person.
  • Speech recognition transcribes human speech automatically and accurately. The technology is improving as machines collect more examples of conversation. This has obvious value for dictation, phone assistance, and much more.
  • Machine translation, as the name indicates, translates text or speech from one language to another. Significant advances have been made in this field in only the past year.8 Machine translation has obvious implications for international relations, defense, and intelligence as well as, in our multilingual society, numerous domestic applications.
  • Computer vision is the ability to identify objects, scenes, and activities in naturally occurring images. It’s how Facebook sorts millions of users’ photos, but it can also scan medical images for indications of disease and identify criminals from surveillance footage. Soon it will allow law enforcement to quickly scan license plate numbers of vehicles stopped at red lights, identifying suspects’ cars in real time.
  • Machine learning takes place without explicit programming. By trial and error, computers learn how to learn, mining information to discover patterns in data that can help predict future events. The larger the datasets, the easier it is to accurately gauge normal or abnormal behavior. When your email program flags a message as spam, or your credit card company warns you of a potentially fraudulent use of your card, machine learning may be involved. Deep learning is a branch of machine learning involving artificial neural networks inspired by the brain’s structure and function.9
  • Robotics is the creation and use of machines to perform automated physical functions. The integration of cognitive technologies such as computer vision with sensors and other sophisticated hardware has given rise to a new generation of robots that can work alongside people and perform many tasks in unpredictable environments. Examples include drones, robots used for disaster response, and robot assistants in home health care.
  • Natural language processing refers to the complex and difficult task of organizing and understanding language in a human way. This goes far beyond interpreting search queries, or translating between Mandarin and English text. Combined with machine learning, a system can scan websites for discussions of specific topics even if the user didn’t input precise search terms. Computers can identify all the people and places mentioned in a document or extract terms and conditions from contracts. As with all AI-enabled technology, these become smarter as they consume more accurate data—and as developers integrate complementary technologies such as machine translation and natural language processing.

We’ve developed a framework that can help government agencies assess their own opportunities for deploying these technologies. It involves examining business processes, services, and programs to find where cognitive technologies may be viable, valuable, or even vital. Figure 8 summarizes this “Three Vs” framework. Government agencies can use it to screen the best opportunities for automation or cognitive technologies.

 

 

 

 

Looking for something?

Use the form below to search the site:

Still not finding what you're looking for? Drop a comment on a post or contact us so we can take care of it!

© 2017 | Daniel Christian