This is likely the No. 1 thing affecting your job performance — from fastcompany.com by Art Markman
Hint: It all starts with figuring out what you don’t know.

Excerpts:

Learning on the job is probably the single most important factor driving your performance at work. You won’t know everything you need to about your job when you’re hired, no matter how good your education is or how much experience you had in previous positions. The road to learning starts with a willingness to admit what you don’t know and an interest in learning new things.

The ability to know what you know and what you don’t know is called metacognition—that is, the process of thinking about your thinking. Your cognitive brain has a sophisticated ability to assess what you do and don’t know. You use several sources of information to make this judgment.

One important social aspect of the Dunning-Kruger effect is that it often leads to tension between younger employees and the firms they work for. People who don’t really understand what skills are required for success in a particular domain may overestimate their own abilities and minimize their perception of the gap between themselves and more senior members of a firm. As a result, they won’t understand why they aren’t being promoted faster and will quickly get frustrated in the early stages of their career. The more you appreciate everything involved in expert performance, the more patient you can be with your own development.

 

After you get the hang of a new position, be strategic about what you learn. You probably need a wider range of expertise than you think. Solving hard problems at work requires drawing not just on expertise from within the domain of your work, but also on knowledge about other areas that may not have seemed relevant at first.

 

 

Four research-based strategies every teacher should be using — from cultofpedagogy.com  by Jennifer Gonzalez

Excerpt (emphasis DSC):

[Per Jennifer] Cognitive scientist Pooja Agarwal and K-12 teacher Patrice Bain have collaborated on a new book, Powerful Teaching: Unleash the Science of Learning. In the book, they go into detail about what it looks like when we actually apply four research-based “Power Tools” in the classroom: retrieval practice, spaced practice, interleaving, and feedback-driven metacognition—which is one we haven’t covered at all on this podcast. Today I’m going to talk with Pooja and Patrice about these strategies, the research behind why they work, and some ways you can start using them right away in your instruction.

 

Instead of assigning homework to give students practice with course material, give mini-quizzes at the start of each class that ask 3-5 questions about the prior day’s learning. These should either receive no grades or be given a very low point value, because the goal of these is to reinforce the learning, not measure or grade student work. 

In her social studies classroom, Bain used to assign homework most nights, and found that not only was she spending up to two hours a night grading it, it also was doing nothing to help students retain information.

 

 

 

4 Essentials for Learning Space Redesign — from CampusTechnology.com by David Raths
There’s a lot more to creating active learning spaces than bringing in new furniture and moving seats around.

 

 

Belief in Learning Styles Myth May Be Detrimental — from apa.org
Many people believe learning styles predict academic and career success, study finds

Excerpts:

WASHINGTON — Many people, including educators, believe learning styles are set at birth and predict both academic and career success even though there is no scientific evidence to support this common myth, according to new research published by the American Psychological Association.

Previous surveys in the United States and other industrialized countries across the world have shown that 80% to 95% of people believe in learning styles. It’s difficult to say how that myth became so widespread, Nancekivell said.

 

Also see:

  • Maybe They’re Born With It, or Maybe It’s Experience: Toward a Deeper Understanding of the Learning Style Myth — from apa.org by Shaylene E. Nancekivell, Priti Shah, and Susan A. Gelman
    .
  • Learning Styles are NOT an Effective Guide for Learning Design — from debunker.club
    Excerpt:
    The strength of evidence against the use of learning styles is very strong. To put it simply, using learning styles to design or deploy learning is not likely to lead to improved learning effectiveness. While it may be true that learners have different learning preferences, those preference are not likely to be a good guide for learning. The bottom line is that when we design learning, there are far better heuristics to use than learning styles.
    .
  • Learning styles: Worth our time? — from Cathy Moore
    .
  • Learning Styles Debunked: There is No Evidence Supporting Auditory and Visual Learning, Psychologists Say — from psychologicalscience.org
    .
  • Learning Styles FAQ — by Daniel Willingham
    Excerpt:
    How can you not believe that that people learn differently? Isn’t it obvious?
    People do learn differently, but I think it is very important to say exactly how they learn differently, and focus our attention on those differences that really matter. If learning styles were obviously right it would be easy to observe evidence for them in experiments. Yet there is no supporting evidence. There are differences among kids that both seem obvious to us and for which evidence is easily obtained in experiments, e.g., that people differ in their interests, that students vary in how much they think of schoolwork as part of their identity (“I’m the kind of kid who works hard in school”) and that kids differ in what they already know at the start of a lesson. All three of these have sizable, easily observed effects on learning. I think that often when people believe that they observe obvious evidence for learning styles, they are mistaking it for ability.

 

From DSC:
While I’ve heard and read through the years that there isn’t support for learning styles — and I’ve come to adopt that perspective as well due to what I’ve read, such as the items listed above — I do think that each of us has our learning preferences (as the debunker club mentioned as well). That is, how we prefer to learn about a new subject:

  • Some people like to read the manual.
  • Others never pick up the manual…they prefer to use the trial and error / hands-on method.
  • Some people prefer to listen to audio books.
  • Others prefer to watch videos.
  • Others like to read about a new topic.
  • Others like to study in a very quiet place — while others prefer some background noise.
  • Some people love to learn in a 100% online-based mode…some people hate it, and that delivery method doesn’t work as well for them.

Along these lines…in my mind, offering learning in multiple media and in multiple ways maximizes the enjoyment of learning by a group of people. And now that we’re all into lifelong learning, the enjoyment of learning has notched waaay up in importance in my book. The more we enjoy learning, the more we enjoy life (and vice versa).

In fact, I’m getting closer to the point of putting enjoyment of learning over grades in terms of importance. Grades are a way to compare people/school systems/colleges/universities/etcetera…they are the currency of our current systems…and they are used to “incentivize” students. But such systems and methods often produce game players, not learners.

 

 

Recommended books from RetrievalPractice.org
Check out our recommended books and reports that describe research on the science of learning and provide practical tips for classroom teaching.

 

.

 

 

 

 

 

…plus several others

 

 

From DSC:
Pastors, what do you think of these ideas?

  • Summarize your key points and put them up on slides at the end of your sermons (and/or at discussion groups after service)
  • Summarize your key points and post them to the churches’ websites — including links to resources that you referenced in your sermons (books, devotions, other)
  • Have an app that folks in your congregation could complete during the sermon (like “fill in the blanks” / missing words or phrases). Or, if you’d prefer that your congregation not have their smartphones out, perhaps you could provide “quizzes” mid-week to assist in information recall (i.e., spaced repetition). That is, people would need to try to fill in the missing phrases and/or words mid-week. Answers would be immediately available if someone asked for them.

Along these lines…should there be more classes in seminary on learning theories and on pedagogy? Hmmm….an interesting thought.

 

Huge study finds professors’ attitudes affect students’ grades — and it’s doubly true for minority students. — from arstechnica.com by Scott Johnson

Excerpt:

Instead, the researchers think the data suggests that—in any number of small ways—instructors who think their students’ intelligence is fixed don’t keep their students as motivated, and perhaps don’t focus as much on teaching techniques that can encourage growth. And while this affects all students, it seems to have an extra impact on underrepresented minority students.

The good news, the researchers say, is that instructors can be persuaded to adopt more of a growth mindset in their teaching through a little education of their own. That small attitude adjustment could make them a more effective teacher, to the significant benefit of a large number of students.

 

Along these lines, also see:

 


 

 
 
 

From DSC:
From Mary Grush’s recent article re: Learning Engineering, I learned that back in the late 1960’s, Herbert Simon believed there would be value in providing college presidents with “learning engineers” (see his article entitled, “The Job of a College President”).

 

 

An excerpt:

What do we find in a university? Physicists well educated in physics, and trained for research in that discipline; English professors learned in their language and its literature (or at least some tiny corner of it); and so on down the list of the disciplines. But we find no one with a professional knowledge of the laws of learning, or of the techniques for applying them (unless it be a professor of educational psychology, who teaches these laws, but has no broader responsibility for their application in the college).

Notice, our topic is learning, not teaching. A college is a place where people come to learn. How much or how little teaching goes on there depends on whether teaching facilitates learning, and if so, under what circumstances. It is a measure of our naivete that we assume implicitly, in almost all our practices, that teaching is the way to produce learning, and that something called a “class” is the best environment for teaching.

But what do we really know about the learning process: about how people learn, about what they learn, and about what they can do with what they learn? We know a great deal today, if by “we” is meant a relatively small group of educational psychologists who have made this their major professional concern. We know much less, if by “we” is meant the rank and file of college teachers.

 

What is learned must be defined in terms of what the student should be able to do. If learning means change in the student, then that change should be visible in changed potentialities of behavior.

Herbert Simon, 1967

 

From DSC:
You will find a great deal of support for active learning in Simon’s article.

 

 

Philippians 4:9 New International Version (NIV) — biblegateway.com

Whatever you have learned or received or heard from me, or seen in me—put it into practice. And the God of peace will be with you.

 

James 1:22-25 New International Version (NIV) — from biblegateway.com

22 Do not merely listen to the word, and so deceive yourselves. Do what it says.23 Anyone who listens to the word but does not do what it says is like someone who looks at his face in a mirror 24 and, after looking at himself, goes away and immediately forgets what he looks like. 25 But whoever looks intently into the perfect law that gives freedom, and continues in itnot forgetting what they have heard, but doing itthey will be blessed in what they do.

 

From DSC:
The word engagement comes to mind here…as does the association between doing and not forgetting (i.e., memory…recall…creating “mental hooks” to hang future learning/content on…which can ultimately impact our behaviors).

 

 

 

The Lesson You Never Got Taught in School: How to Learn! — from bigthink.com by Simon Oxenham (from 2/15/13)
Psychological Science in the Public Interest evaluated ten techniques for improving learning, ranging from mnemonics to highlighting and came to some surprising conclusions.

 

Excerpts:

Practice Testing (Rating = High)
This is where things get interesting; testing is often seen as a necessary evil of education. Traditionally, testing consists of rare but massively important ‘high stakes’ assessments. There is however, an extensive literature demonstrating the benefits of testing for learning – but importantly, it does not seem necessary that testing is in the format of ‘high stakes’ assessments. All testing including ‘low stakes’ practice testing seems to result in benefits. Unlike many of the other techniques mentioned, the benefits of practice testing are not modest – studies have found that a practice test can double free recall!

Distributed Practice (Rating = High)
Have you ever wondered whether it is best to do your studying in large chunks or divide your studying over a period of time? Research has found that the optimal level of distribution of sessions for learning is 10-20% of the length of time that something needs to be remembered. So if you want to remember something for a year you should study at least every month, if you want to remember something for five years you should space your learning every six to twelve months. If you want to remember something for a week you should space your learning 12-24 hours apart. It does seem however that the distributed-practice effect may work best when processing information deeply – so for best results you might want to try a distributed practice and self-testing combo.

 

Also see:

 

 

 

 

Per Willingham (emphasis DSC):

  • Rereading is a terribly ineffective strategy. The best strategy–by far — is to self-test — which is the 9th most popular strategy out of 11 in this study.  Self-testing leads to better memory even compared to concept mapping (Karpicke & Blunt, 2011).

 

Three Takeaways from Becoming An Effective Learner:

  • Boser says that the idea that people have different learning styles, such as visual learning or verbal learning, has little scientific evidence to support it.
  • According to Boser, teachers and parents should praise their kids’ ability and effort, instead of telling them they’re smart. “When we tell people they are smart, we give them… a ‘fixed mindset,’” says Boser.
  • If you are learning piano – or anything, really – the best way to learn is to practice different composers’ work. “Mixing up your practices is far more effective,” says Boser.

 

Cumulative exams aren’t the same as spacing and interleaving. Here’s why. — from  retrievalpractice.org

Excerpts (emphasis DSC):

Our recommendations to make cumulative exams more powerful with small tweaks for you and your students:

  • Cumulative exams are good, but encourage even more spacing and discourage cramming with cumulative mini-quizzes throughout the semester, not just as an end-of-semester exam.
  • Be sure that cumulative mini-quizzes, activities, and exams include similar concepts that require careful discrimination from students, not simply related topics.
  • Make sure you are using spacing and interleaving as learning strategies and instructional strategies throughout the semester, not simply as part of assessments and cumulative exams.

Bottom line: Just because an exam is cumulative does not mean it automatically involves spacing or interleaving. Be mindful of relationships across exam content, as well as whether students are spacing their study throughout the semester or simply cramming before an exam – cumulative or otherwise.

 


From DSC:
We, like The Learning Scientists encourages us to do and even provides their own posters, should have posters with these tips on them throughout every single school and library in the country. The posters each have a different practice such as:

  • Spaced practice
  • Retrieval practice
  • Elaboration
  • Interleaving
  • Concrete examples
  • Dual coding

That said, I could see how all of that information could/would be overwhelming to some students and/or the more technical terms could bore them or fly over their heads. So perhaps we could boil down the information to feature excerpts from the top sections only that put the concepts into easier to digest words such as:

  • Practice bringing information to mind
  • Switch between ideas while you study
  • Combine words and visuals
  • Etc. 

 

Learn how to study using these practices

 

 

 

 

From DSC:
This is where the quizzing features/tools within a Learning Management System such as Canvas, Moodle, Blackboard Learn, etc. are so valuable. They provide students with opportunities for low-stakes (or no-stakes) practice in retrieving information and to see if they are understanding things or not. Doing such formative assessments along the way can point out areas where they need further practice, as well as areas where the students are understanding things well (and only need an occasional question or two on that item in order to reduce the effects of the forgetting curve).

 

 

 

 

Combining retrieval, spacing, and feedback boosts STEM learning — from retrievalpractice.org

Punchline:
Scientists demonstrated that when college students used a quizzing program that combined retrieval practice, spacing, and feedback, exam performance increased by nearly a letter grade.

—-

Abstract
The most effective educational interventions often face significant barriers to widespread implementation because they are highly specific, resource intense, and/or comprehensive. We argue for an alternative approach to improving education: leveraging technology and cognitive science to develop interventions that generalize, scale, and can be easily implemented within any curriculum. In a classroom experiment, we investigated whether three simple, but powerful principles from cognitive science could be combined to improve learning. Although implementation of these principles only required a few small changes to standard practice in a college engineering course, it significantly increased student performance on exams. Our findings highlight the potential for developing inexpensive, yet effective educational interventions that can be implemented worldwide.

In summary, the combination of spaced retrieval practice and required feedback viewing had a powerful effect on student learning of complex engineering material. Of course, the principles from cognitive science could have been applied without the use of technology. However, our belief is that advances in technology and ideas from machine learning have the potential to exponentially increase the effectiveness and impact of these principles. Automation is an important benefit, but technology also can provide a personalized learning experience for a rapidly growing, diverse body of students who have different knowledge and academic backgrounds. Through the use of data mining, algorithms, and experimentation, technology can help us understand how best to implement these principles for individual learners while also producing new discoveries about how people learn. Finally, technology facilitates access. Even if an intervention has a small effect size, it can still have a substantial impact if broadly implemented. For example, aspirin has a small effect on preventing heart attacks and strokes when taken regularly, but its impact is large because it is cheap and widely available. The synergy of cognitive science, machine learning, and technology has the potential to produce inexpensive, but powerful learning tools that generalize, scale, and can be easily implemented worldwide.

Keywords: Education. Technology. Retrieval practice. Spacing. Feedback. Transfer of learning.

 

 

Awesome study hacks: 5 ways to remember more of what you read — from academiccoachingwithpat.com by Pat LaDouceur; with thanks to Julia Reed for her Tweet on this

Excerpts:

  1. Annotate as you read
  2. Skim
  3. Rewrite key ideas in your own words
  4. Write a critique
  5. List your questions

 

Reorganizing information helps you learn it more effectively, which is why Rewriting makes the list as one of the top 5 reading study hacks. It forces you to stay active and involved with the text (from DSC: the word “engaged” comes to mind here), to consider arguments and synthesize information, and thus remember more of what you read.

 

 

Looking for something?

Use the form below to search the site:

Still not finding what you're looking for? Drop a comment on a post or contact us so we can take care of it!

© 2019 | Daniel Christian