Belief in Learning Styles Myth May Be Detrimental — from apa.org
Many people believe learning styles predict academic and career success, study finds

Excerpts:

WASHINGTON — Many people, including educators, believe learning styles are set at birth and predict both academic and career success even though there is no scientific evidence to support this common myth, according to new research published by the American Psychological Association.

Previous surveys in the United States and other industrialized countries across the world have shown that 80% to 95% of people believe in learning styles. It’s difficult to say how that myth became so widespread, Nancekivell said.

 

Also see:

  • Maybe They’re Born With It, or Maybe It’s Experience: Toward a Deeper Understanding of the Learning Style Myth — from apa.org by Shaylene E. Nancekivell, Priti Shah, and Susan A. Gelman
    .
  • Learning Styles are NOT an Effective Guide for Learning Design — from debunker.club
    Excerpt:
    The strength of evidence against the use of learning styles is very strong. To put it simply, using learning styles to design or deploy learning is not likely to lead to improved learning effectiveness. While it may be true that learners have different learning preferences, those preference are not likely to be a good guide for learning. The bottom line is that when we design learning, there are far better heuristics to use than learning styles.
    .
  • Learning styles: Worth our time? — from Cathy Moore
    .
  • Learning Styles Debunked: There is No Evidence Supporting Auditory and Visual Learning, Psychologists Say — from psychologicalscience.org
    .
  • Learning Styles FAQ — by Daniel Willingham
    Excerpt:
    How can you not believe that that people learn differently? Isn’t it obvious?
    People do learn differently, but I think it is very important to say exactly how they learn differently, and focus our attention on those differences that really matter. If learning styles were obviously right it would be easy to observe evidence for them in experiments. Yet there is no supporting evidence. There are differences among kids that both seem obvious to us and for which evidence is easily obtained in experiments, e.g., that people differ in their interests, that students vary in how much they think of schoolwork as part of their identity (“I’m the kind of kid who works hard in school”) and that kids differ in what they already know at the start of a lesson. All three of these have sizable, easily observed effects on learning. I think that often when people believe that they observe obvious evidence for learning styles, they are mistaking it for ability.

 

From DSC:
While I’ve heard and read through the years that there isn’t support for learning styles — and I’ve come to adopt that perspective as well due to what I’ve read, such as the items listed above — I do think that each of us has our learning preferences (as the debunker club mentioned as well). That is, how we prefer to learn about a new subject:

  • Some people like to read the manual.
  • Others never pick up the manual…they prefer to use the trial and error / hands-on method.
  • Some people prefer to listen to audio books.
  • Others prefer to watch videos.
  • Others like to read about a new topic.
  • Others like to study in a very quiet place — while others prefer some background noise.
  • Some people love to learn in a 100% online-based mode…some people hate it, and that delivery method doesn’t work as well for them.

Along these lines…in my mind, offering learning in multiple media and in multiple ways maximizes the enjoyment of learning by a group of people. And now that we’re all into lifelong learning, the enjoyment of learning has notched waaay up in importance in my book. The more we enjoy learning, the more we enjoy life (and vice versa).

In fact, I’m getting closer to the point of putting enjoyment of learning over grades in terms of importance. Grades are a way to compare people/school systems/colleges/universities/etcetera…they are the currency of our current systems…and they are used to “incentivize” students. But such systems and methods often produce game players, not learners.

 

 

Cambridge library installation gives readers control of their sensory space — from cambridge.wickedlocal.com by Hannah Schoenbaum

Excerpts:

A luminous igloo-shaped structure in the front room of the Cambridge Public Library beckoned curious library visitors during the snowy first weekend of March, inviting them to explore a space engineered for everyone, yet uniquely their own.

Called “Alterspace” and developed by Harvard’s metaLAB and Library Innovation Lab, this experiment in adaptive architecture granted the individual control over the sensory elements in his or her space. A user enters the LED-illuminated dome to find headphones, chairs and an iPad on a library cart, which displays six modes: Relax, Read, Meditate, Focus, Create and W3!Rd.

From the cool blues and greens of Relax mode to a rainbow overload of excitement in the W3!Rd mode, Alterspace is engineered to transform its lights, sounds and colors into the ideal environment for a particular action.

 

 

From DSC:
This brings me back to the question/reflection…in the future, will students using VR headsets be able to study by a brook? An ocean? In a very quiet library (i.e., the headset would come with solid noise cancellation capabilities build into it)?  This type of room/capability would really be helpful for our daughter…who is easily distracted and doesn’t like noise.

 

 

Using arts education to help other lessons stick — from nytimes.com by Perri Klass
The arts can be a source of joy in a child’s day, and also come in handy for memorizing times tables.

Excerpts:

Arts education in schools has introduced many children to great painters and great music, and helped them through their first dance steps or tentative musical endeavors. It can serve as a bright spot in the schoolchild’s day or week, a class that brings in beauty, color and joy, and which is not about testing.

These subjects are often under threat either from budget cuts or from the inexorable demands of academic testing and “accountability,” but insights from neuroscience suggest that arts education can play additional important roles in how children learn.

Arts education encompasses many disciplines: “I’m talking about everything from music, drama, dance, design, visual arts,” Dr. Sowden said. And the goal goes beyond the specific subjects, he said: “You’re looking for opportunities in the arts education context to encourage children to ask questions, to use their imaginations, but also to approach their work in a systematic, disciplined way.”

 

 

For a next gen learning platform: A Netflix-like interface to check out potential functionalities / educationally-related “apps” [Christian]

From DSC:
In a next generation learning system, it would be sharp/beneficial to have a Netflix-like interface to check out potential functionalities that you could turn on and off (at will) — as one component of your learning ecosystem that could feature a setup located in your living room or office.

For example, put a Netflix-like interface to the apps out at eduappcenter.com (i.e., using a rolling interface at first, then going to a static page/listing of apps…again…similar to Netflix).

 

A Netflix-like interface to check out potential functionalities / educationally-related apps

 

 

 

From DSC:
For anyone out there who thinks that teaching and learning is easy and who agrees with the uninformed saying that goes “Those who can’t do…teach”…might I recommend a few potential to-do’s for you to try out…?

  1. Try teaching 30-35 students yourself for at least 4-6 weeks about a topic that you just found out that you’ll be teaching and one that you don’t know much about. (And see if you enjoy the process that some teachers sometimes have to go through…putting down the tracks right in front of the trains that are rapidly moving down the tracks right behind them.) Also, you must have at least one student in your class who requires an Individualized Education Program (IEP) as well as 4-5 students who constantly cause trouble and who don’t want to be in school at all.
    .
  2. Identify each student’s strengths, weaknesses, and learning preferences — and their Zone of Proximal Development — then customize the learning that each of your 30-35 learners receives (with the goal of keeping each student moving forward at their most appropriate pace, while staying encouraged and yet appropriately challenged).
    .
  3. Attend Individualized Education Program (IEP) meetings and work with other IEP team members to significantly contribute to the appropriate student’s (or students’) teaching and learning environment(s). For a real challenge, at least one of those students will be someone who is struggling, but is very much hanging in there — someone who is “right in the middle of the pack,” so to speak. (My guess is that if you did this, you would never think of teaching, nor teachers, nor other specialists in quite the same way again. My guess is that you would develop a whole new appreciation for how complex teaching and learning really is.)

Regarding that last item about at least one of your students requiring an IEP, here are some questions that might come up:

  • What specialized services are needed this year?
  • What do the teachers need to know about this student’s cognitive processing/executive functioning?
  • How has the student been doing with the specialized services and teaching and learning strategies that have been attempted since the last IEP meeting? 
  • If their scores are going down, how are you going to address that issue (especially given limited resources)?
  • How is the student’s motivation level doing? Is attending school still a positive experience? Or are things starting to become negative and/or downright painful for the student? Are they starting to get bummed out about having to come to school?
  • How are they relating with and collaborating with other students? If poorly, how are you going to address that issue? How are you going to handle group-related projects (especially after reading all of those articles that assert which skills the workplace values these days)?
  • What do you do with grades and assessments? Do you treat the student differently and give them higher grades to keep them encouraged? But if you do that, will your school system back you up on that or will someone come down hard on you for doing that? Or, perhaps you will find yourself struggling internally — trying to figure out what grades are really for and wondering if they are helpful in the first place. In fact, you might find yourself wondering if grades aren’t really just a mechanism for ranking and comparing individuals, schools, and even entire school systems (which, as we know, impacts property values)? 
  • What do grades really produce — game players or (lifelong) learners? It won’t surprise you to know that I would argue that the former is what gets “produced.”  Grades don’t really produce as many learners as they do game-players (i.e., students who know the minimum amount of work that they need to do and still get that all important A).

So, as you can hopefully see here, learning is messy. It’s rarely black and white…there’s a lot of gray out there and a lot of things to consider. It’s not a one-size fits all. And teaching others well is certainly NOT easy to do! 

RELEVANT IDEAS:

While I’m thinking about related ideas here…wouldn’t it be great if EVERY. SINGLE. STUDENT. could have their own IEP and their own TEAM of specialists — people who care about their learning?

What if each student could have their own cloud-based learner profile — a portion of which would be a series of VoiceThreads per student, per period of time (or per mastering a particular topic or area)?  Such VoiceThreads could include multimedia-based comments, insights, and recommendations for how the student is doing and how they best learn. Through the years, those teams of people — people who care about that student’s learning — could help that student identify their:

  • strengths
  • weaknesses
  • passions/interests
  • their optimal learning strategies and preferences
  • potential careers

The students could periodically review such feedback.

 

 

For every single student, we could build a history of feedback, helpful suggestions, 
and recommendations via audio, video, text, graphics, etc.

 

 

From DSC:
Not too long ago, I really enjoyed watching a program on PBS regarding America’s 100 most-loved books, entitled, “The Great American Read.”

 

Watch “The Grand Finale”

 

While that’s not the show I’m talking about, it got me to thinking of one similar to it — something educational, yet entertaining. But also, something more.

The program that came to my mind would be a program that’s focused on significant topics and issues within American society — offered up in a debate/presentation style format. 

For example, you could have different individuals, groups, or organizations discuss the pros and cons of an issue or topic. The show would provide contact information for helpful resources, groups, organizations, legislators, etc.  These contacts would be for learning more about a subject or getting involved with finding a solution for that problem.

For example, how about this for a potential topic: Grades or no grades?
  • What are the pros and cons of using an A-F grading system?
  • What are the benefits and issues/drawbacks with using grades? 
  • How are we truly using grades Do we use them to rank and compare individuals, schools, school systems, communities? Do we use them to “weed people out” of a program?
  • With our current systems, what “product” do we get? Do we produce game-players or people who enjoy learning? (Apologies for some of my bias showing up here! But my son has become a major game-player and, likely, so did I at his age.)
  • How do grades jibe with Individualized Education Programs (IEPs)? On one hand…how do you keep someone moving forward, staying positive, and trying to keep learning/school enjoyable yet on the other hand, how do you have those grades mean something to those who obtain data to rank school systems, communities, colleges, programs, etc.?
  • How do grades impact one’s desire to learn throughout one’s lifetime?

Such debates could be watched by students and then they could have their own debates on subjects that they propose.

Or the show could have journalists debate college or high school teams. The format could sometimes involve professors and deans debating against researchers. Or practitioners/teachers debating against researchers/cognitive psychologists. 

Such a show could be entertaining, yet highly applicable and educational. We would probably all learn something. And perhaps have our eyes opened up to a new perspective on an issue.

Or better yet, we might actually resolve some more issues and then move on to address other ones!

 

 

The information below is from Heather Campbell at Chegg
(emphasis DSC)


 

Chegg Math Solver is an AI-driven tool to help the student understand math. It is more than just a calculator – it explains the approach to solving the problem. So, students won’t just copy the answer but understand and can solve similar problems at the same time. Most importantly,students can dig deeper into a problem and see why it’s solved that way. Chegg Math Solver.

In every subject, there are many key concepts and terms that are crucial for students to know and understand. Often it can be hard to determine what the most important concepts and terms are for a given subject, and even once you’ve identified them you still need to understand what they mean. To help you learn and understand these terms and concepts, we’ve provided thousands of definitions, written and compiled by Chegg experts. Chegg Definition.

 

 

 

 

 


From DSC:
I see this type of functionality as a piece of a next generation learning platform — a piece of the Living from the Living [Class] Room type of vision. Great work here by Chegg!

Likely, students will also be able to take pictures of their homework, submit it online, and have that image/problem analyzed for correctness and/or where things went wrong with it.

 

 


 

 

From DSC:
The picture below was posted in the item below from edutopia. What a powerful picture! And not just for art or drama teachers!

Does it not once again illustrate that we are different? The lenses that we view the world through are different. Our learners are different. Each of us comes to a learning experience with different backgrounds, emotions, knowledge…and different real-life experiences.

As the article mentions, we need to create safe and supportive learning environments, where the love of (or at least the enjoyment of) learning can thrive.

 

Getting creative with social and emotional learning (SEL) — from by Maurice Elias, Sara LaHayne
How to incorporate creative expression and movement in the classroom while building social and emotional learning skills.

Excerpt:

Being creative is an inherently vulnerable process. In order to authentically build SEL competencies through creative expression, teachers need to strive to create a safe space, provide time, and open doors for validation.

  • Creating a safe and supportive classroom environment
  • Providing time
  • Opening the doors for validation

 

 

From DSC:
I have often reflected on differentiation or what some call personalized learning and/or customized learning. How does a busy teacher, instructor, professor, or trainer achieve this, realistically?

It’s very difficult and time-consuming to do for sure. But it also requires a team of specialists to achieve such a holy grail of learning — as one person can’t know it all. That is, one educator doesn’t have the necessary time, skills, or knowledge to address so many different learning needs and levels!

  • Think of different cognitive capabilities — from students that have special learning needs and challenges to gifted students
  • Or learners that have different physical capabilities or restrictions
  • Or learners that have different backgrounds and/or levels of prior knowledge
  • Etc., etc., etc.

Educators  and trainers have so many things on their plates that it’s very difficult to come up with _X_ lesson plans/agendas/personalized approaches, etc.  On the other side of the table, how do students from a vast array of backgrounds and cognitive skill levels get the main points of a chapter or piece of text? How can they self-select the level of difficulty and/or start at a “basics” level and work one’s way up to harder/more detailed levels if they can cognitively handle that level of detail/complexity? Conversely, how do I as a learner get the boiled down version of a piece of text?

Well… just as with the flipped classroom approach, I’d like to suggest that we flip things a bit and enlist teams of specialists at the publishers to fulfill this need. Move things to the content creation end — not so much at the delivery end of things. Publishers’ teams could play a significant, hugely helpful role in providing customized learning to learners.

Some of the ways that this could happen:

Use an HTML like language when writing a textbook, such as:

<MainPoint> The text for the main point here. </MainPoint>

<SubPoint1>The text for the subpoint 1 here.</SubPoint1>

<DetailsSubPoint1>More detailed information for subpoint 1 here.</DetailsSubPoint1>

<SubPoint2>The text for the subpoint 2 here.</SubPoint2>

<DetailsSubPoint2>More detailed information for subpoint 2 here.</DetailsSubPoint2>

<SubPoint3>The text for the subpoint 3 here.</SubPoint3>

<DetailsSubPoint3>More detailed information for subpoint 3 here.</DetailsSubPoint1>

<SummaryOfMainPoints>A list of the main points that a learner should walk away with.</SummaryOfMainPoints>

<BasicsOfMainPoints>Here is a listing of the main points, but put in alternative words and more basic ways of expressing those main points. </BasicsOfMainPoints>

<Conclusion> The text for the concluding comments here.</Conclusion>

 

<BasicsOfMainPoints> could be called <AlternativeExplanations>
Bottom line: This tag would be to put things forth using very straightforward terms.

Another tag would be to address how this topic/chapter is relevant:
<RealWorldApplication>This short paragraph should illustrate real world examples

of this particular topic. Why does this topic matter? How is it relevant?</RealWorldApplication>

 

On the students’ end, they could use an app that works with such tags to allow a learner to quickly see/review the different layers. That is:

  • Show me just the main points
  • Then add on the sub points
  • Then fill in the details
    OR
  • Just give me the basics via an alternative ways of expressing these things. I won’t remember all the details. Put things using easy-to-understand wording/ideas.

 

It’s like the layers of a Microsoft HoloLens app of the human anatomy:

 

Or it’s like different layers of a chapter of a “textbook” — so a learner could quickly collapse/expand the text as needed:

 

This approach could be helpful at all kinds of learning levels. For example, it could be very helpful for law school students to obtain outlines for cases or for chapters of information. Similarly, it could be helpful for dental or medical school students to get the main points as well as detailed information.

Also, as Artificial Intelligence (AI) grows, the system could check a learner’s cloud-based learner profile to see their reading level or prior knowledge, any IEP’s on file, their learning preferences (audio, video, animations, etc.), etc. to further provide a personalized/customized learning experience. 

To recap:

  • “Textbooks” continue to be created by teams of specialists, but add specialists with knowledge of students with special needs as well as for gifted students. For example, a team could have experts within the field of Special Education to help create one of the overlays/or filters/lenses — i.e., to reword things. If the text was talking about how to hit a backhand or a forehand, the alternative text layer could be summed up to say that tennis is a sport…and that a sport is something people play. On the other end of the spectrum, the text could dive deeply into the various grips a person could use to hit a forehand or backhand.
  • This puts the power of offering differentiation at the point of content creation/development (differentiation could also be provided for at the delivery end, but again, time and expertise are likely not going to be there)
  • Publishers create “overlays” or various layers that can be turned on or off by the learners
  • Can see whole chapters or can see main ideas, topic sentences, and/or details. Like HTML tags for web pages.
  • Can instantly collapse chapters to main ideas/outlines.

 

 

Reflections on “Are ‘smart’ classrooms the future?” [Johnston]

Are ‘smart’ classrooms the future? — from campustechnology.com by Julie Johnston
Indiana University explores that question by bringing together tech partners and university leaders to share ideas on how to design classrooms that make better use of faculty and student time.

Excerpt:

To achieve these goals, we are investigating smart solutions that will:

  • Untether instructors from the room’s podium, allowing them control from anywhere in the room;
  • Streamline the start of class, including biometric login to the room’s technology, behind-the-scenes routing of course content to room displays, control of lights and automatic attendance taking;
  • Offer whiteboards that can be captured, routed to different displays in the room and saved for future viewing and editing;
  • Provide small-group collaboration displays and the ability to easily route content to and from these displays; and
  • Deliver these features through a simple, user-friendly and reliable room/technology interface.

Activities included collaborative brainstorming focusing on these questions:

  • What else can we do to create the classroom of the future?
  • What current technology exists to solve these problems?
  • What could be developed that doesn’t yet exist?
  • What’s next?

 

 

 

From DSC:
Though many peoples’ — including faculty members’ — eyes gloss over when we start talking about learning spaces and smart classrooms, it’s still an important topic. Personally, I’d rather be learning in an engaging, exciting learning environment that’s outfitted with a variety of tools (physically as well as digitally and virtually-based) that make sense for that community of learners. Also, faculty members have very limited time to get across campus and into the classroom and get things setup…the more things that can be automated in those setup situations the better!

I’ve long posted items re: machine-to-machine communications, voice recognition/voice-enabled interfaces, artificial intelligence, bots, algorithms, a variety of vendors and their products including Amazon’s Alexa / Apple’s Siri / Microsoft’s Cortana / and Google’s Home or Google Assistant, learning spaces, and smart classrooms, as I do think those things are components of our future learning ecosystems.

 

 

 

Reflections on “Inside Amazon’s artificial intelligence flywheel” [Levy]

Inside Amazon’s artificial intelligence flywheel — from wired.com by Steven Levy
How deep learning came to power Alexa, Amazon Web Services, and nearly every other division of the company.

Excerpt (emphasis DSC):

Amazon loves to use the word flywheel to describe how various parts of its massive business work as a single perpetual motion machine. It now has a powerful AI flywheel, where machine-learning innovations in one part of the company fuel the efforts of other teams, who in turn can build products or offer services to affect other groups, or even the company at large. Offering its machine-learning platforms to outsiders as a paid service makes the effort itself profitable—and in certain cases scoops up yet more data to level up the technology even more.

It took a lot of six-pagers to transform Amazon from a deep-learning wannabe into a formidable power. The results of this transformation can be seen throughout the company—including in a recommendations system that now runs on a totally new machine-learning infrastructure. Amazon is smarter in suggesting what you should read next, what items you should add to your shopping list, and what movie you might want to watch tonight. And this year Thirumalai started a new job, heading Amazon search, where he intends to use deep learning in every aspect of the service.

“If you asked me seven or eight years ago how big a force Amazon was in AI, I would have said, ‘They aren’t,’” says Pedro Domingos, a top computer science professor at the University of Washington. “But they have really come on aggressively. Now they are becoming a force.”

Maybe the force.

 

 

From DSC:
When will we begin to see more mainstream recommendation engines for learning-based materials? With the demand for people to reinvent themselves, such a next generation learning platform can’t come soon enough!

  • Turning over control to learners to create/enhance their own web-based learner profiles; and allowing people to say who can access their learning profiles.
  • AI-based recommendation engines to help people identify curated, effective digital playlists for what they want to learn about.
  • Voice-driven interfaces.
  • Matching employees to employers.
  • Matching one’s learning preferences (not styles) with the content being presented as one piece of a personalized learning experience.
  • From cradle to grave. Lifelong learning.
  • Multimedia-based, interactive content.
  • Asynchronously and synchronously connecting with others learning about the same content.
  • Online-based tutoring/assistance; remote assistance.
  • Reinvent. Staying relevant. Surviving.
  • Competency-based learning.

 

The Living [Class] Room -- by Daniel Christian -- July 2012 -- a second device used in conjunction with a Smart/Connected TV

 

 

 

 

 

 

 

We’re about to embark on a period in American history where career reinvention will be critical, perhaps more so than it’s ever been before. In the next decade, as many as 50 million American workers—a third of the total—will need to change careers, according to McKinsey Global Institute. Automation, in the form of AI (artificial intelligence) and RPA (robotic process automation), is the primary driver. McKinsey observes: “There are few precedents in which societies have successfully retrained such large numbers of people.”

Bill Triant and Ryan Craig

 

 

 

Also relevant/see:

Online education’s expansion continues in higher ed with a focus on tech skills — from educationdive.com by James Paterson

Dive Brief:

  • Online learning continues to expand in higher ed with the addition of several online master’s degrees and a new for-profit college that offers a hybrid of vocational training and liberal arts curriculum online.
  • Inside Higher Ed reported the nonprofit learning provider edX is offering nine master’s degrees through five U.S. universities — the Georgia Institute of Technology, the University of Texas at Austin, Indiana University, Arizona State University and the University of California, San Diego. The programs include cybersecurity, data science, analytics, computer science and marketing, and they cost from around $10,000 to $22,000. Most offer stackable certificates, helping students who change their educational trajectory.
  • Former Harvard University Dean of Social Science Stephen Kosslyn, meanwhile, will open Foundry College in January. The for-profit, two-year program targets adult learners who want to upskill, and it includes training in soft skills such as critical thinking and problem solving. Students will pay about $1,000 per course, though the college is waiving tuition for its first cohort.

 

 

 

Make it Stick: The Science of Successful Learning— by Peter C. Brown, Henry L Roediger III, and Mark A. McDaniel

Some of the key points and learning strategies they mention in the preface:

  • The most effective learning strategies are not intuitive
  • Spaced repetition of key ideas and the interleaving of different but related topics are two excellent teaching/learning strategies

 

 

Some the key points and learning strategies they mention in the first chapter:

  • When they talk about learning they mean acquiring knowledge and skills and having them readily available from memory so you can make sense of future problems and opportunities.
  • There are some immutable aspects of learning that we can probably all agree on:
    1. To be useful, learning requires memory, so what we’ve learned is till there later when we need it.
    2. We need to keep learning and remembering all our lives.
    3. Learning is an acquired skill and most effective strategies are counterintuitive
  • Learning is deeper and more durable when it’s effortful
  • We are poor judges of when we are learning well and when we’re not
  • Rereading text and massed practice (i.e., cramming) of a skill or new knowledge are by far the preferred study strategies of learners of all stripes, but they”re also among the least productive. Rereading and cramming give rise to feeling of fluency that are taken to be signs of mastery, but for true mastery or durability these strategies are largely a waste of time.
  • Retrieval practice — recalling facts or concepts or events from memory — is a more effective learning strategy than reviewing by rereading
    • Flashcards are a simple example
    • Retrieval strengthens the memory and interrupts forgetting
    • A single simple quiz after reading a text or hearing a lecture produces better learning and remembering that rereading the text of reviewing lecture notes.
  • Periodic practice arrest forgetting, strengthens retrieval routes, and is essential for hanging onto the knowledge you want to gain.
  • Space out practice and interleave the practice of 2 or more subjects, retrieval is harder and feels less productive, but the effort produces longer lasting learning and enables more versatile application of it in later settings.
  • Trying to solve a problem before being taught the solution leads to better learning, even when errors are made in the attempt.
  • Learning styles are not supported by the empirical research.
  • When you’re adept at extracting the underlying principles or “rules” that differentiate types of problems, you’re more successful at picking the right solutions in unfamiliar situations. This skill is better acquired through interleaved and varied practice than massed practice.
  • In virtually all areas of learning, you build better mastery when you use testing as a tool to identify and bring up your areas of weakness.
  • All learning requires a foundation of prior knowledge.

 

If you practice elaboration, there’s no known limit to how much you can learn. Elaboration is the process of giving new material meaning by expressing it in your own words and connecting it with what you already know. The more you can explain about the way your new learning relates to your prior knowledge, the stronger your grasp of the new learning will be, and the more connections you create that will help you remember it later.***

 

“When learning is hard, you’re doing important work.”

 

“Making mistakes and correcting them builds the bridges to advanced learning.”

 

Learning is stronger when it matters.^^^

 

  • One of the most striking research findings is the power of active retrieval — testing — to strengthen memory, and the more effortful the retrieval, the stronger the benefit.
    .
  • The act of retrieving learning from memory has 2 profound benefits:
    1. It tells you what you know and don’t know, and therefore where to focus further study
    2. Recalling what you have learned causes your bring to reconsolidate the memory
      .
  • To learn better and remember longer, [use]:
    • various forms of retrieval practice, such as low-stakes quizzing and self-testing
    • spacing out practice
    • interleaving the practice of different but related topics or skills
    • trying to solve a problem before being taught the solution
    • and distilling the underlying principles or rules that differentiate types of problems

 

One of the best habits a learner can instill in herself is regular self-quizzing to recalibrate her understanding of what she does and does not know. 

 

Brown, P. C., Roediger III, H. L., & McDaniel, M. A. (2014).
Make It Stick: The Science of Successful Learning.
Cambridge, MA: The Belknap Press of Harvard University Press.
Retrieved from https://www.amazon.com/Make-Stick-Science-Successful-Learning/dp/0674729013

 

 

*** This quote reminds me of what turned Quin Schultze’ learning around. With Quin’s permission, the following excerpt is from Quentin Schultze’s solid book, Communicate like a True Leader (pages 35 & 36)

 

 

 

During the beginning of my sophomore year, I started reviewing each day’s class notes after classes were over. I soon realized how little I recalled even of that day’s lectures and discussions. It dawned on me that normal note-taking merely gave me the impression that I was learning. I implemented a strategy that revolutionized my learning, launched me successfully into graduate school, helped me become a solid teacher, equipped me to be a productive researcher-writer, and made it possible for me to be an engaging speaker.

I not only reviewed my notes daily. I rewrote them from scratch within a couple of hours of each class meeting. I used my actual course notes as prompts to recall more of the lecture and to help me organize my own reactions to the material. My notes expanded. My retention swelled.

My revised notes became a kind of journal of my dialogue with the instructor and the readings. I integrated into my revised course notes my daily reading notes, reworking them into language that was meaningful to me and preparing to ask the instructor at the next class anything that I was uncertain about. From then on I earned nearly straight A’s with far less cramming for exams.

Moreover, I had begun journaling about my learning — one of the most important communication skills. I became a real learner by discovering how to pay attention to others and myself.

In a broad sense, I learned how to listen.

 

^^^ This quote explains why it is so important to answer the first question a learner asks when approaching a new lesson/topic/lecture/etc.:

  • Why is this topic relevant?
    i.e., why is this topic important and worthy of my time to learn it?

 

 

From DSC:
After seeing the article entitled, “Scientists Are Turning Alexa into an Automated Lab Helper,” I began to wonder…might Alexa be a tool to periodically schedule & provide practice tests & distributed practice on content? In the future, will there be “learning bots” that a learner can employ to do such self-testing and/or distributed practice?

 

 

From page 45 of the PDF available here:

 

Might Alexa be a tool to periodically schedule/provide practice tests & distributed practice on content?

 

 

 


From DSC:
From an early age, we need to help our students learn how to learn. What tips, advice, and/or questions can we help our students get into the habit of asking themselves? Along these lines, the article below,”How Metacognition Boosts Learning,” provides some excellent questions. 

Speaking of questions…I’ll add some more, but of a different sort:

  • How can all educators do a better job of helping their students learn how to learn?
  • How can Instructional Designers and Instructional Technologists help out here? Librarians? Provosts? Deans? Department Chairs? Teachers? Trainers (in the corporate L&D space)?
  • How might technologies come into play here in terms of building more effective web-based learner profiles that can be fed into various platforms and/or into teachers’ game plans?

I appreciate Bill Knapp and his perspectives very much (see here and here; Bill is GRCC’s Executive Director of Distance Learning & Instructional Technologies). The last we got together, we wondered out loud:

  • Why don’t teachers, professors, school systems, administrations within in K-20 address this need/topic more directly…? (i.e., how can we best help our students learn how to learn?)
  • Should we provide a list of potentially helpful techniques, questions, tools, courses, modules, streams of content, or other resources on how to learn?
  • Should we be weaving these sorts of things into our pedagogies?
  • Are there tools — such as smartphone related apps — that can be of great service here? For example, are there apps for sending out reminders and/or motivational messages?

As Bill asserted, we need to help our students build self-efficacy and a mindset of how to learn. Then learners can pivot into new areas with much more confidence. I agree. In an era that continues to emphasize freelancing and entrepreneurship — plus dealing with a rapidly-changing workforce — people now need to be able to learn quickly and effectively. They need to have the self confidence to be able to pivot. So how can we best prepare our students for their futures?

Also, on a relevant but slightly different note (and I suppose is of the flavor of a Universal Design for Learning approach)…I think that “tests” given to special needs children — for example that might have to do with executive functioning, and/or identifying issues, and/or providing feedback as to how a particular learner might best absorb information — would be helpful for ALL students to take. If I realize that the way my brain learns best is to have aural and visual materials presented on any given topic, that is very useful information for me to realize — and the sooner the better!

 



How Metacognition Boosts Learning — from edutopia.org by Youki Terada
Students often lack the metacognitive skills they need to succeed, but they can develop these skills by addressing some simple questions.

Excerpt (emphasis DSC):

Strategies that target students’ metacognition—the ability to think about thinking—can close a gap that some students experience between how prepared they feel for a test and how prepared they actually are. In a new study, students in an introductory college statistics class who took a short online survey before each exam asking them to think about how they would prepare for it earned higher grades in the course than their peers—a third of a letter grade higher, on average. This low-cost intervention helped students gain insight into their study strategies, boosting their metacognitive skills and giving them tools to be more independent learners.

More recently, a team of psychologists and neuroscientists published a comprehensive analysis of 10 learning techniques commonly used by students. They discovered that one of the most popular techniques—rereading material and highlighting key points—is also one of the least effective because it leads students to develop a false sense of mastery. They review a passage and move on without realizing that they haven’t thoroughly understood and absorbed the material.

Metacognition helps students recognize the gap between being familiar with a topic and understanding it deeply. But weaker students often don’t have this metacognitive recognition—which leads to disappointment and can discourage them from trying harder the next time.

To promote students’ metacognition, middle and high school teachers can implement the following strategies. Elementary teachers can model or modify these strategies with their students to provide more scaffolding.

During class, students should ask themselves:

  • What are the main ideas of today’s lesson?
  • Was anything confusing or difficult?
  • If something isn’t making sense, what question should I ask the teacher?
  • Am I taking proper notes?
  • What can I do if I get stuck on a problem?

Before a test, students should ask themselves:

  • What will be on the test?
  • What areas do I struggle with or feel confused about?
  • How much time should I set aside to prepare for an upcoming test?
  • Do I have the necessary materials (books, school supplies, a computer and online access, etc.) and a quiet place to study, with no distractions?
  • What strategies will I use to study? Is it enough to simply read and review the material, or will I take practice tests, study with a friend, or write note cards?
  • What grade would I get if I were to take the test right now?

After a test, students should ask themselves:

  • What questions did I get wrong, and why did I get them wrong?
  • Were there any surprises during the test?
  • Was I well-prepared for the test?
  • What could I have done differently?
  • Am I receiving useful, specific feedback from my teacher to help me progress?

 



From DSC:
Below are a few resources more about metacognition and learning how to learn:

 

 

 

  • Students should be taught how to study. — from Daniel Willingham
    Excerpt:
    Rereading is a terribly ineffective strategy. The best strategy–by far–is to self-test–which is the 9th most popular strategy out of 11 in this study. Self-testing leads to better memory even compared to concept mapping (Karpicke & Blunt, 2011).

 

 

 

  • The Lesson You Never Got Taught in School: How to Learn! — from bigthink.com
    Excerpt:
    Have you ever wondered whether it is best to do your studying in large chunks or divide your studying over a period of time? Research has found that the optimal level of distribution of sessions for learning is 10-20% of the length of time that something needs to be remembered. So if you want to remember something for a year you should study at least every month, if you want to remember something for five years you should space your learning every six to twelve months. If you want to remember something for a week you should space your learning 12-24 hours apart. It does seem however that the distributed-practice effect may work best when processing information deeply – so for best results you might want to try a distributed practice and self-testing combo.There is however a major catch – do you ever find that the amount of studying you do massively increases before an exam? Most students fall in to the “procrastination scallop” – we are all guilty at one point of cramming all the knowledge in right before an exam, but the evidence is pretty conclusive that this is the worst way to study, certainly when it comes to remembering for the long term. What is unclear is whether cramming is so popular because students don’t understand the benefits of distributed practice or whether testing practices are to blame – probably a combination of both. One thing is for sure, if you take it upon yourself to space your learning over time you are pretty much guaranteed to see improvements.

 

 



Addendum on 1/22/18:

Using Metacognition to Promote Learning
IDEA Paper #63 | December 2016
By Barbara J. Millis

Excerpt:

Some Definitions of Metacognition
Metacognition, simplistically defined, can be described as “cognition about cognition” or “thinking about thinking” (Flavell, Miller & Miller, 2002, p. 175; Shamir, Metvarech, & Gida, 2009, p. 47; Veeman, Van Hout-Wolters, & Afflerbach, 2006, p. 5). However, because metacognition is multifaceted and multi-layered (Dunlosky & Metcalf, 2009, p. 1; Flavell, 1976; Hall, Danielewicz, & Ware , 2013, p. 149; Lovett, 2013, p. 20), more complex definitions are called for. Basically, metacognition must be viewed as an ongoing process that involves reflection and action. Metacognitive thinkers change both their understandings and their strategies. The clearest definitions of metacognition emphasize its nature as a process or cycle.

Several authors (Nilson, 2013, p. 9; Schraw, 2001; & Zimmerman, 1998; 2000; 2002) narrow this process down to three ongoing stages. The first stage, pre-planning, emphasizes the need for reflection on both one’s own thinking and the task at hand, including reflection on past strategies that might have succeeded or failed. Following this self-reflection, during planning, metacognitive thinkers develop and implement—put into action—a plan. In the third and final stage—post-planning adjustments/revisions—subsequent analysis following implementation leads to modifications, revised decisions, and new future plans. In an excellent summary, Wirth states that “metacognition requires students both to understand how they are learning and to develop the ability to make plans, to monitor progress and to make adjustments” (as cited in Jaschik, 2011, p. 2).

 

Conclusion: As we have seen, metacognition is a complex but valuable skill that can nurture students’ learning and their self-awareness of the learning process. It is best conceived as a three-step process that can occur through deliberately designed activities. Such activities can take place before, during, and after face-to-face lessons or through online learning. They can also be built around both multiple choice and essay examinations. Immersing students in these metacognitive activities—assuming there are opportunities for practice and feedback—can result in students who are reflective learners.

 

 

 

 

TV is (finally) an app: The goods, the bads and the uglies for learning — from thejournal.com by Cathie Norris, Elliot Soloway

Excerpts:

Television. TV. There’s an app for that. Finally! TV — that is, live shows such as the news, specials, documentaries (and reality shows, if you must) — is now just like Candy Crunch and Facebook. TV apps (e.g., DirecTV Now) are available on all devices — smartphones, tablets, laptops, Chromebooks. Accessing streams upon streams of videos is, literally, now just a tap away.

Plain and simple: readily accessible video can be a really valuable resource for learners and learning.

Not everything that needs to be learned is on video. Instruction will need to balance the use of video with the use of printed materials. That balance, of course, needs to take in cost and accessibility.

Now for the 800 pound gorilla in the room: Of course, that TV app could be a huge distraction in the classroom. The TV app has just piled yet another classroom management challenge onto a teacher’s back.

That said, it is early days for TV as an app. For example, HD (High Definition) TV demands high bandwidth — and we can experience stuttering/skipping at times. But, when 5G comes around in 2020, just two years from now, POOF, that stuttering/skipping will disappear. “5G will be as much as 1,000 times faster than 4G.”  Yes, POOF!

 

From DSC:
Learning via apps is here to stay. “TV” as apps is here to stay. But what’s being described here is but one piece of the learning ecosystem that will be built over the next 5-15 years and will likely be revolutionary in its global impact on how people learn and grow. There will be opportunities for social-based learning, project-based learning, and more — with digital video being a component of the ecosystem, but is and will be insufficient to completely move someone through all of the levels of Bloom’s Taxonomy.

I will continue to track this developing learning ecosystem, but voice-driven personal assistants are already here. Algorithm-based recommendations are already here. Real-time language translation is already here.  The convergence of the telephone/computer/television continues to move forward.  AI-based bots will only get better in the future. Tapping into streams of up-to-date content will continue to move forward. Blockchain will likely bring us into the age of cloud-based learner profiles. And on and on it goes.

We’ll still need teachers, professors, and trainers. But this vision WILL occur. It IS where things are heading. It’s only a matter of time.

 

The Living [Class] Room -- by Daniel Christian -- July 2012 -- a second device used in conjunction with a Smart/Connected TV

 

 

 

 

 

Looking for something?

Use the form below to search the site:

Still not finding what you're looking for? Drop a comment on a post or contact us so we can take care of it!

© 2019 | Daniel Christian