From DSC:
I just found out about the work going out at LearningScientists.org.

I was very impressed after my initial review of their materials! What I really appreciate about their work is that they are serious in identifying some highly effective means of how we learn best — pouring over a great deal of research in order to do so. But they don’t leave things there. They help translate that research into things that teachers can then try out in the classroom. This type of practical, concrete help is excellent and needed!

  • Daniel Willingham and some of his colleagues take research and help teachers apply it as well
  • Another person who does this quite well is Pooja Agarwal, an Assistant Professor, Cognitive Scientist, & former K-12 Teacher. Pooja is teaming up with Patrice Bain to write a forthcoming book entitled, Powerful Teaching: Unleash the Science of Learning!  She founded and operates the RetrievalPractice.org site.)

From the LearningScientists.org website (emphasis DSC):

We are cognitive psychological scientists interested in research on education. Our main research focus is on the science of learning. (Hence, “The Learning Scientists”!)

Our Vision is to make scientific research on learning more accessible to students, teachers, and other educators.

Click the button below to learn more about us. You can also check out our social media pages: FacebookTwitterInstagram, & Tumblr.

 

They have a solid blog, podcast, and some valuable downloadable content.

 

 

 

In the downloadable content area, the posters that they’ve created (or ones like them) should be posted at every single facility where learning occurs — K-12 schools, community colleges, colleges, universities, libraries of all kinds, tutoring centers, etc. It may be that such posters — and others like them that encourage the development of metacognitive skills of our students — are out there. I just haven’t run into them.

For example, here’s a poster on learning how to study using spaced practice:

 

 

 

 

Anyway, there’s some great work out there at LearningScientists.org!

 

 


Also relevant here, see:

 

 

 

 

 

“Retrieval practice” is a learning strategy where we focus on getting information out. Through the act of retrieval, or calling information to mind, our memory for that information is strengthened and forgetting is less likely to occur. Retrieval practice is a powerful tool for improving learning without more technology, money, or class time.

On this website (and in our free Retrieval Practice Guide), we discuss how to use retrieval practice to improve learning. Established by nearly 100 years of research, retrieval practice is a simple and powerful technique to transform teaching and learning.

In order to improve learning, we must approach it through a new lens – let’s focus not on getting information “in,” but on getting information “out.”

 

 

What is retrieval practice?
Retrieval practice is a strategy in which bringing information to mind enhances and boosts learning. Deliberately recalling information forces us to pull our knowledge “out” and examine what we know.

For instance, recalling an answer to a science question improves learning to a greater extent than looking up the answer in a textbook. And having to actually recall and write down an answer to a flashcard improves learning more than thinking that you know the answer and flipping the card over prematurely.

Often, we think we’ve learned some piece of information, but we come to realize we struggle when we try to recall the answer. It’s precisely this “struggle” or challenge that improves our memory and learning – by trying to recall information, we exercise or strengthen our memory, and we can also identify gaps in our learning.

Note that cognitive scientists used to refer to retrieval practice as “the testing effect.” Prior research examined the fascinating finding that tests (or short quizzes) dramatically improve learning. More recently, researchers have demonstrated that more than simply tests and quizzes improve learning: flashcards, practice problems, writing prompts, etc. are also powerful tools for improving learning. 

Whether this powerful strategy is called retrieval practice or the testing effect, it is important to keep in mind that the act of pulling information “out” from our minds dramatically improves learning, not the tests themselves. In other words retrieval is the active process we engage in to boost learning; tests and quizzes are merely methods to promote retrieval.

 

 

Also on that site:

 

 

Learn more about this valuable book with our:

 

 

Also on that site:

 

 

Excerpt from the Interleaved Mathematics Practice guide (on page 8 of 13):

Interleaved practice gives students a chance to choose a strategy.
When practice problems are arranged so that consecutive problems cannot be solved by the same strategy, students are forced to choose a strategy on the basis of the problem itself. This gives students a chance to both choose and use a strategy.

Interleaved practice works.
In several randomized control studies, students who received mostly interleaved practice scored higher on a final test than did students who received mostly blocked practice.

 

 

 



From DSC:
Speaking of resources regarding learning…why don’t we have posters in all of our schools, colleges, community colleges, universities, vocational training centers, etc. that talk about the most effective strategies to learn about new things?



 

 

 

Make it Stick: The Science of Successful Learning— by Peter C. Brown, Henry L Roediger III, and Mark A. McDaniel

Some of the key points and learning strategies they mention in the preface:

  • The most effective learning strategies are not intuitive
  • Spaced repetition of key ideas and the interleaving of different but related topics are two excellent teaching/learning strategies

 

“This is a book about what people can do for themselves right now in order to learn better and remember longer. The responsibility for learning rests with every individual.”

 

 

Some the key points and learning strategies they mention in the first chapter:

  • When they talk about learning they mean acquiring knowledge and skills and having them readily available from memory so you can make sense of future problems and opportunities.
  • There are some immutable aspects of learning that we can probably all agree on:
    1. To be useful, learning requires memory, so what we’ve learned is till there later when we need it.
    2. We need to keep learning and remembering all our lives.
    3. Learning is an acquired skill and most effective strategies are counterintuitive
  • Learning is deeper and more durable when it’s effortful
  • We are poor judges of when we are learning well and when we’re not
  • Rereading text and massed practice (i.e., cramming) of a skill or new knowledge are by far the preferred study strategies of learners of all stripes, but they”re also among the least productive. Rereading and cramming give rise to feeling of fluency that are taken to be signs of mastery, but for true mastery or durability these strategies are largely a waste of time.
  • Retrieval practice — recalling facts or concepts or events from memory — is a more effective learning strategy than reviewing by rereading
    • Flashcards are a simple example
    • Retrieval strengthens the memory and interrupts forgetting
    • A single simple quiz after reading a text or hearing a lecture produces better learning and remembering that rereading the text of reviewing lecture notes.
  • Periodic practice arrest forgetting, strengthens retrieval routes, and is essential for hanging onto the knowledge you want to gain.
  • Space out practice and interleave the practice of 2 or more subjects, retrieval is harder and feels less productive, but the effort produces longer lasting learning and enables more versatile application of it in later settings.
  • Trying to solve a problem before being taught the solution leads to better learning, even when errors are made in the attempt.
  • Learning styles are not supported by the empirical research.
  • When you’re adept at extracting the underlying principles or “rules” that differentiate types of problems, you’re more successful at picking the right solutions in unfamiliar situations. This skill is better acquired through interleaved and varied practice than massed practice.
  • In virtually all areas of learning, you build better mastery when you use testing as a tool to identify and bring up your areas of weakness.
  • All learning requires a foundation of prior knowledge.

 

If you practice elaboration, there’s no known limit to how much you can learn. Elaboration is the process of giving new material meaning by expressing it in your own words and connecting it with what you already know. The more you can explain about the way your new learning relates to your prior knowledge, the stronger your grasp of the new learning will be, and the more connections you create that will help you remember it later.***

 

“When learning is hard, you’re doing important work.”

 

“Making mistakes and correcting them builds the bridges to advanced learning.”

 

Learning is stronger when it matters.^^^

 

  • One of the most striking research findings is the power of active retrieval — testing — to strengthen memory, and the more effortful the retrieval, the stronger the benefit.
  • The act of retrieving learning from memory has 2 profound benefits:
    1. It tells you what you know and don’t know, and therefore where to focus further study
    2. Recalling what you have learned causes your bring to reconsolidate the memory
  • To learn better and remember longer, [use]:
    • various forms of retrieval practice, such as low-stakes quizzing and self-testing
    • spacing out practice
    • interleaving the practice of different but related topics or skills
    • trying to solve a problem before being taught the solution
    • and distilling the underlying principles or rules that differentiate types of problems

 

One of the best habits a learner can instill in herself is regular self-quizzing to recalibrate her understanding of what she does and does not know. 

 

Brown, P. C., Roediger III, H. L., & McDaniel, M. A. (2014).
Make It Stick: The Science of Successful Learning.
Cambridge, MA: The Belknap Press of Harvard University Press.
Retrieved from https://www.amazon.com/Make-Stick-Science-Successful-Learning/dp/0674729013

 

 

*** This quote reminds me of what turned Quin Schultze’ learning around. With Quin’s permission, the following excerpt is from Quentin Schultze’s solid book, Communicate like a True Leader (pages 35 & 36)

 

 

 

During the beginning of my sophomore year, I started reviewing each day’s class notes after classes were over. I soon realized how little I recalled even of that day’s lectures and discussions. It dawned on me that normal note-taking merely gave me the impression that I was learning. I implemented a strategy that revolutionized my learning, launched me successfully into graduate school, helped me become a solid teacher, equipped me to be a productive researcher-writer, and made it possible for me to be an engaging speaker.

I not only reviewed my notes daily. I rewrote them from scratch within a couple of hours of each class meeting. I used my actual course notes as prompts to recall more of the lecture and to help me organize my own reactions to the material. My notes expanded. My retention swelled.

My revised notes became a kind of journal of my dialogue with the instructor and the readings. I integrated into my revised course notes my daily reading notes, reworking them into language that was meaningful to me and preparing to ask the instructor at the next class anything that I was uncertain about. From then on I earned nearly straight A’s with far less cramming for exams.

Moreover, I had begun journaling about my learning — one of the most important communication skills. I became a real learner by discovering how to pay attention to others and myself.

In a broad sense, I learned how to listen.

 

^^^ This quote explains why it is so important to answer the first question a learner asks when approaching a new lesson/topic/lecture/etc.:

  • Why is this topic relevant?
    i.e., why is this topic important and worthy of my time to learn it?

 

 

From DSC:
For those of you who attend services in churches/temples/synagogues, if I asked you to tell me what the 2-3 main key points were — along with the accompanying scripture(s) — from the last sermon that you heard…would you be able to tell me? Would you be able to retrieve those key points from your memory?

With all these reflections going on in my mind about metacognition and Self-Regulated Learning (SRL) these days, I did a mental pivot the other day and I moved the focus off of professors and teachers — and re-focused it towards the church…to pastors. I thought to myself…at the end of each sermon, wouldn’t it really help “solidify the message,” facilitate active reflection, and hopefully have more practical impact if pastors/churches would provide:

  • An extremely pared down list of the the main 2-3 key points; again using very few words (many churches already do this, I’m sure)
  • For a little more detail (but not much more), the pastor could provide the outline of his/her sermon in printed form (some churches do this via a fill-in-the blank pre-printed sheet), or put it up on a slide that’s projected at the end of the service, or put it online even before the sermon was given that day
  • A list of metacognitive check-in type of questions such as:
    • What did you understand in my sermon?
    • What didn’t you understand in my sermon?
    • What do you agree with?
    • What do you disagree with?
    • How can you apply this sermon this week?

By doing this, pastors would help move their main point(s) into more of the long-term memories of the people attending services within their congregations.

 

#SelfRegulatedLearning | #Metacognition

 

 

 

Why Students Forget—and What You Can Do About It — from edutopia.org by Youki Terada
Our brains are wired to forget, but there are research-backed strategies you can use to make your teaching stick.

Excerpt:

5 Teacher Strategies
When students learn a new piece of information, they make new synaptic connections. Two scientifically based ways to help them retain learning is by making as many connections as possible—typically to other concepts, thus widening the “spiderweb” of neural connections—but also by accessing the memory repeatedly over time.

Which explains why the following learning strategies, all tied to research conducted within the past five years, are so effective:

  1. Peer-to-peer explanations: When students explain what they’ve learned to peers, fading memories are reactivated, strengthened, and consolidated. This strategy not only increases retention but also encourages active learning (Sekeres et al., 2016).
  2. The spacing effect: Instead of covering a topic and then moving on, revisit key ideas throughout the school year. Research shows that students perform better academically when given multiple opportunities to review learned material. For example, teachers can quickly incorporate a brief review of what was covered several weeks earlier into ongoing lessons, or use homework to re-expose students to previous concepts (Carpenter et al., 2012; Kang, 2016).
  3. Frequent practice tests: Akin to regularly reviewing material, giving frequent practice tests can boost long-term retention and, as a bonus, help protect against stress, which often impairs memory performance. Practice tests can be low stakes and ungraded, such as a quick pop quiz at the start of a lesson or a trivia quiz on Kahoot, a popular online game-based learning platform. Breaking down one large high-stakes test into smaller tests over several months is an effective approach (Adesope, Trevisan, & Sundararajan, 2017; Butler, 2010; Karpicke, 2016).
  4. Interleave concepts: Instead of grouping similar problems together, mix them up. Solving problems involves identifying the correct strategy to use and then executing the strategy. When similar problems are grouped together, students don’t have to think about what strategies to use—they automatically apply the same solution over and over. Interleaving forces students to think on their feet, and encodes learning more deeply (Rohrer, 2012; Rohrer, Dedrick, & Stershic, 2015).
  5. Combine text with images: It’s often easier to remember information that’s been presented in different ways, especially if visual aids can help organize information. For example, pairing a list of countries occupied by German forces during World War II with a map of German military expansion can reinforce that lesson. It’s easier to remember what’s been read and seen, instead of either one alone (Carney & Levin, 2002; Bui & McDaniel, 2015).

So even though forgetting starts as soon as learning happens—as Ebbinghaus’s experiments demonstrate—research shows that there are simple and effective strategies to help make learning stick.

 

 

 

Aiding Reading Comprehension With Post-Its — from edutopia.org by Judy Willis

Excerpt:

Sample Post-it Prompts
In these prompts, the students address the text directly—by calling it “you”—as though they were having a conversation with it.

To be completed before reading for prediction and preview:

  • I think you’ll be telling me…
  • I already know things about you, so I predict…

To be completed after briefly skimming the assigned pages:

  • What does the heading for this section suggest about what will come?
  • What does this picture (graph, diagram, etc.) suggest about this reading topic?

To be completed during reading as a response to what is read:

  • You’re similar to what I’ve learned before, because you remind me of…
  • I would have preferred a picture of… (Students can also sketch, describe, or download a picture, graph, or diagram)
  • This is not what I expected, which was…
  • This gives me an idea for…
  • I want to know more about…
  • This information could be useful to me because I’m interested in…
  • I think this will be on the test because…

The use of Post-its increases memory pattern linkages, understanding, and the pleasure of reading. As students become more skilled readers through strategies that promote pattern seeking and linking, they build their independent skills about how to think actively about the text—their metacognitive skills.

 

 

 

From DSC:
I have been trying to blog more about learning how to learn — and to provide some more resources on metacognition and the like.

Along these lines — and with permission from the author — the following excerpt is from Quentin Schultze’s solid book, Communicate like a True Leader (pages 35 & 36).  I asked Quin if I could share this excerpt because I think it’s a great strategy to share with students. Whether they know it or not, learning how to learn is THEE key skill these days.

Quin would also emphasize some other items such as listening, attending to reality, communicating effectively with others, and more…but my focus here is on learning strategies.  So I share it in the hope that it will help some of you students out there just as it helped Quin.

 

 

During the beginning of my sophomore year, I started reviewing each day’s class notes after classes were over. I soon realized how little I recalled even of that day’s lectures and discussions. It dawned on me that normal note-taking merely gave me the impression that I was learning. I implemented a strategy that revolutionized my learning, launched me successfully into graduate school, helped me become a solid teacher, equipped me to be a productive researcher-writer, and made it possible for me to be an engaging speaker.

I not only reviewed my notes daily. I rewrote them from scratch within a couple of hours of each class meeting. I used my actual course notes as prompts to recall more of the lecture and to help me organize my own reactions to the material. My notes expanded. My retention swelled.

My revised notes became a kind of journal of my dialogue with the instructor and the readings. I integrated into my revised course notes my daily reading notes, reworking them into language that was meaningful to me and preparing to ask the instructor at the next class anything that I was uncertain about. From then on I earned nearly straight A’s with far less cramming for exams.

Moreover, I had begun journaling about my learning — one of the most important communication skills. I became a real learner by discovering how to pay attention to others and myself.

In a broad sense, I learned how to listen.

 

 

 

A Curiosity Guide — from byrdseed.com Ian Byrd


Excerpts:

Anticipation and Dopamine: In part one of this curiosity series, we explore the connection between curiosity, anticipation, and dopamine and discover why we remember things better when we are allowed to wonder.

So, to wrap up our first round of exploring curiosity:

  • When we become curious, we are anticipating learning information.
  • Our brain releases dopamine, a pleasurable chemical related to the anticipation of a reward (in this case information).
  • Simply being in this curious state activates the hippocampus, enhancing memory.
  • We remember things better when we are in this state, even things we weren’t actually curious about.

Closing Question:
How many times a day are your students in a curious state, eagerly anticipating information?

 

Confusion and Curiosity: So how do we make kids curious? We’ll cover two aspects: creating information gaps and (yes) purposefully confusing our students.

In the first article, we covered what happenings in our brains when we become curious. We also noted that just being in a state of curiosity can improve memory, even for things you’re not curious about.

Here’s one key: to become curious, you must already know something about the topic. Curiosity only fires up when we discover that some important information is missing or that it contradicts information we already had. George Loewenstein calls this the Information Gap theory of curiosity.

Simply put: we have to give students enough information for them to become curious about the missing information.

To wrap up part two:

  • Curiosity requires us to know something about the topic.
  • We become curious when information doesn’t fit an existing mental model.
  • Confusion is part of curiosity. We enjoy a certain amount of cognitive disequilibrium.
  • But! No one wants to be curious forever. It must be resolved.

 

Curiosity Is Social: When we’re curious, we can enhance that curiosity by discussing it with others. Our mutual confusion takes us deeper into the experience.

So, in classrooms, it’s worth purposefully (but gently) confusing students and then letting them talk to each other. It will build their interest and enhance their curiosity.

 

Creating Cultures of Curiosity: The biggest factor in our students’ curiosity at school is us! Teachers can create (or kill) cultures of curiosity. We’ll look at four qualities and a couple experiments run by Susan Engel.

Teachers have enormous power to encourage or discourage curiosity. Every word and action can either build a culture of curiosity or a culture of compliance.

 

 

 


From DSC:
From an early age, we need to help our students learn how to learn. What tips, advice, and/or questions can we help our students get into the habit of asking themselves? Along these lines, the article below,”How Metacognition Boosts Learning,” provides some excellent questions. 

Speaking of questions…I’ll add some more, but of a different sort:

  • How can all educators do a better job of helping their students learn how to learn?
  • How can Instructional Designers and Instructional Technologists help out here? Librarians? Provosts? Deans? Department Chairs? Teachers? Trainers (in the corporate L&D space)?
  • How might technologies come into play here in terms of building more effective web-based learner profiles that can be fed into various platforms and/or into teachers’ game plans?

I appreciate Bill Knapp and his perspectives very much (see here and here; Bill is GRCC’s Executive Director of Distance Learning & Instructional Technologies). The last we got together, we wondered out loud:

  • Why don’t teachers, professors, school systems, administrations within in K-20 address this need/topic more directly…? (i.e., how can we best help our students learn how to learn?)
  • Should we provide a list of potentially helpful techniques, questions, tools, courses, modules, streams of content, or other resources on how to learn?
  • Should we be weaving these sorts of things into our pedagogies?
  • Are there tools — such as smartphone related apps — that can be of great service here? For example, are there apps for sending out reminders and/or motivational messages?

As Bill asserted, we need to help our students build self-efficacy and a mindset of how to learn. Then learners can pivot into new areas with much more confidence. I agree. In an era that continues to emphasize freelancing and entrepreneurship — plus dealing with a rapidly-changing workforce — people now need to be able to learn quickly and effectively. They need to have the self confidence to be able to pivot. So how can we best prepare our students for their futures?

Also, on a relevant but slightly different note (and I suppose is of the flavor of a Universal Design for Learning approach)…I think that “tests” given to special needs children — for example that might have to do with executive functioning, and/or identifying issues, and/or providing feedback as to how a particular learner might best absorb information — would be helpful for ALL students to take. If I realize that the way my brain learns best is to have aural and visual materials presented on any given topic, that is very useful information for me to realize — and the sooner the better!

 



How Metacognition Boosts Learning — from edutopia.org by Youki Terada
Students often lack the metacognitive skills they need to succeed, but they can develop these skills by addressing some simple questions.

Excerpt (emphasis DSC):

Strategies that target students’ metacognition—the ability to think about thinking—can close a gap that some students experience between how prepared they feel for a test and how prepared they actually are. In a new study, students in an introductory college statistics class who took a short online survey before each exam asking them to think about how they would prepare for it earned higher grades in the course than their peers—a third of a letter grade higher, on average. This low-cost intervention helped students gain insight into their study strategies, boosting their metacognitive skills and giving them tools to be more independent learners.

More recently, a team of psychologists and neuroscientists published a comprehensive analysis of 10 learning techniques commonly used by students. They discovered that one of the most popular techniques—rereading material and highlighting key points—is also one of the least effective because it leads students to develop a false sense of mastery. They review a passage and move on without realizing that they haven’t thoroughly understood and absorbed the material.

Metacognition helps students recognize the gap between being familiar with a topic and understanding it deeply. But weaker students often don’t have this metacognitive recognition—which leads to disappointment and can discourage them from trying harder the next time.

To promote students’ metacognition, middle and high school teachers can implement the following strategies. Elementary teachers can model or modify these strategies with their students to provide more scaffolding.

During class, students should ask themselves:

  • What are the main ideas of today’s lesson?
  • Was anything confusing or difficult?
  • If something isn’t making sense, what question should I ask the teacher?
  • Am I taking proper notes?
  • What can I do if I get stuck on a problem?

Before a test, students should ask themselves:

  • What will be on the test?
  • What areas do I struggle with or feel confused about?
  • How much time should I set aside to prepare for an upcoming test?
  • Do I have the necessary materials (books, school supplies, a computer and online access, etc.) and a quiet place to study, with no distractions?
  • What strategies will I use to study? Is it enough to simply read and review the material, or will I take practice tests, study with a friend, or write note cards?
  • What grade would I get if I were to take the test right now?

After a test, students should ask themselves:

  • What questions did I get wrong, and why did I get them wrong?
  • Were there any surprises during the test?
  • Was I well-prepared for the test?
  • What could I have done differently?
  • Am I receiving useful, specific feedback from my teacher to help me progress?

 



From DSC:
Below are a few resources more about metacognition and learning how to learn:

 

 

 

  • Students should be taught how to study. — from Daniel Willingham
    Excerpt:
    Rereading is a terribly ineffective strategy. The best strategy–by far–is to self-test–which is the 9th most popular strategy out of 11 in this study. Self-testing leads to better memory even compared to concept mapping (Karpicke & Blunt, 2011).

 

 

 

  • The Lesson You Never Got Taught in School: How to Learn! — from bigthink.com
    Excerpt:
    Have you ever wondered whether it is best to do your studying in large chunks or divide your studying over a period of time? Research has found that the optimal level of distribution of sessions for learning is 10-20% of the length of time that something needs to be remembered. So if you want to remember something for a year you should study at least every month, if you want to remember something for five years you should space your learning every six to twelve months. If you want to remember something for a week you should space your learning 12-24 hours apart. It does seem however that the distributed-practice effect may work best when processing information deeply – so for best results you might want to try a distributed practice and self-testing combo.There is however a major catch – do you ever find that the amount of studying you do massively increases before an exam? Most students fall in to the “procrastination scallop” – we are all guilty at one point of cramming all the knowledge in right before an exam, but the evidence is pretty conclusive that this is the worst way to study, certainly when it comes to remembering for the long term. What is unclear is whether cramming is so popular because students don’t understand the benefits of distributed practice or whether testing practices are to blame – probably a combination of both. One thing is for sure, if you take it upon yourself to space your learning over time you are pretty much guaranteed to see improvements.

 

 



Addendum on 1/22/18:

Using Metacognition to Promote Learning
IDEA Paper #63 | December 2016
By Barbara J. Millis

Excerpt:

Some Definitions of Metacognition
Metacognition, simplistically defined, can be described as “cognition about cognition” or “thinking about thinking” (Flavell, Miller & Miller, 2002, p. 175; Shamir, Metvarech, & Gida, 2009, p. 47; Veeman, Van Hout-Wolters, & Afflerbach, 2006, p. 5). However, because metacognition is multifaceted and multi-layered (Dunlosky & Metcalf, 2009, p. 1; Flavell, 1976; Hall, Danielewicz, & Ware , 2013, p. 149; Lovett, 2013, p. 20), more complex definitions are called for. Basically, metacognition must be viewed as an ongoing process that involves reflection and action. Metacognitive thinkers change both their understandings and their strategies. The clearest definitions of metacognition emphasize its nature as a process or cycle.

Several authors (Nilson, 2013, p. 9; Schraw, 2001; & Zimmerman, 1998; 2000; 2002) narrow this process down to three ongoing stages. The first stage, pre-planning, emphasizes the need for reflection on both one’s own thinking and the task at hand, including reflection on past strategies that might have succeeded or failed. Following this self-reflection, during planning, metacognitive thinkers develop and implement—put into action—a plan. In the third and final stage—post-planning adjustments/revisions—subsequent analysis following implementation leads to modifications, revised decisions, and new future plans. In an excellent summary, Wirth states that “metacognition requires students both to understand how they are learning and to develop the ability to make plans, to monitor progress and to make adjustments” (as cited in Jaschik, 2011, p. 2).

 

Conclusion: As we have seen, metacognition is a complex but valuable skill that can nurture students’ learning and their self-awareness of the learning process. It is best conceived as a three-step process that can occur through deliberately designed activities. Such activities can take place before, during, and after face-to-face lessons or through online learning. They can also be built around both multiple choice and essay examinations. Immersing students in these metacognitive activities—assuming there are opportunities for practice and feedback—can result in students who are reflective learners.

 

 

 

 

How to improve memory retention in online training — from growthengineering.co.uk by Christopher Pappas

Excerpt:

4. Incorporate A “Moment Of Need” Online Training Repository
That brings us to the next tip, which is to incorporate a “just in time” online training library. This features microlearning online training resources that are easy to digest and remember. Employees can access support tools based on their needs, goals, and skill gaps. Best of all, they can expand their knowledge whenever it’s most convenient, whether that’s on the sales floor, before a client meeting, or during the morning commute. “Moment of need” online training repositories aid in memory retention by breaking the online training content into consumable pieces, instead of barraging your employees with large quantities of information.

 

From DSC:
This idea of an online training repository is tied in with a more recent development of “chatbots.” As artificial intelligence continues to pick up steam, these chatbots could offer internal employees as well as external customers automated responses to questions. People could ask the questions either by typing in their questions and/or by using their voices to ask their questions. So keep your eyes on chatbots — as they will likely bring a whole new method of obtaining information and professional development to us in the near future!

 



 

Also from Christopher Pappas (@cpappas) see:

 

 



 

 

Looking for something?

Use the form below to search the site:

Still not finding what you're looking for? Drop a comment on a post or contact us so we can take care of it!

© 2018 | Daniel Christian