6 key trends to 21st century teaching — from edsurge.com

Excerpt:

It’s popular these days to complain that college teaching hasn’t changed in hundreds of years. And sure, it’s possible to find some professors on any campus holding yellowed lecture notes, or clinging to dusty chalk. But the reality is that the internet and digital technologies have already brought profound changes to instructional styles and tools in higher education.

So what are the new teaching approaches catching on at today’s campuses? And what are the broader cultural changes around college teaching?

We set out to answer those questions over the past year, with a series of articles and interviews exploring what teaching in the 21st century looks like. Some show the nuances of the challenges of teaching with technology by telling stories of innovative professors, including how a water agency official who teaches an online community college course got started in creating open educational resources when her class was incorporated into a zero-cost textbook degree program. Others dive into research on the culture of teaching, like a talk with an anthropologist studying how professors react to (and sometimes resist) research on teaching practices.

 

 

 

Towards a Reskilling Revolution: Industry-Led Action for the Future of Work — from weforum.org

As the Fourth Industrial Revolution impacts skills, tasks and jobs, there is growing concern that both job displacement and talent shortages will impact business dynamism and societal cohesion. A proactive and strategic effort is needed on the part of all relevant stakeholders to manage reskilling and upskilling to mitigate against both job losses and talent shortages.

Through the Preparing for the Future of Work project, the World Economic Forum provides a platform for designing and implementing intra-industry collaboration on the future of work, working closely with the public sector, unions and educators. The output of the project’s first phase of work, Towards a Reskilling Revolution: A Future of Jobs for All, highlighted an innovative method to identify viable and desirable job transition pathways for disrupted workers. This second report, Towards a Reskilling Revolution: Industry-Led Action for the Future of Work extends our previous research to assess the business case for reskilling and establish its magnitude for different stakeholders. It also outlines a roadmap for selected industries to address specific challenges and opportunities related to the transformation of their workforce.

 

See the PDF file / report here.

 

 

 

 

Tiny microbots fold like origami to travel through the human body — from digitaltrends.com by Georgina Torbet

Excerpt:

Tiny robots modeled after bacteria could be used to deliver drugs to hard to reach areas of the human body. Scientists at École polytechnique fédérale de Lausanne (EPFL) and the Swiss Federal Institute of Technology in Zurich (ETH Zurich) have developed what they call elastic microbots that can change shape depending on their environment.

 

Training the workforce of the future: Education in America will need to adapt to prepare students for the next generation of jobs – including ‘data trash engineer’ and ‘head of machine personality design’– from dailymail.co.uk by Valerie Bauman

Excerpts:

  • Careers that used to safely dodge the high-tech bullet will soon require at least a basic grasp of things like web design, computer programming and robotics – presenting a new challenge for colleges and universities
  • A projected 85 percent of the jobs that today’s college students will have in 2030 haven’t been invented yet
  • The coming high-tech changes are expected to touch a wider variety of career paths than ever before
  • Many experts say American universities aren’t ready for the change because the high-tech skills most workers will need are currently focused just on people specializing in science, technology, engineering and math

.

 

 

Forecast 5.0 – The Future of Learning: Navigating the Future of Learning  — from knowledgeworks.org by Katherine Prince, Jason Swanson, and Katie King
Discover how current trends could impact learning ten years from now and consider ways to shape a future where all students can thrive.

 

 

 

Intelligent Machines: One of the fathers of AI is worried about its future — from technologyreview.com by Will Knight
Yoshua Bengio wants to stop talk of an AI arms race and make the technology more accessible to the developing world.

Excerpts:

Yoshua Bengio is a grand master of modern artificial intelligence.

Alongside Geoff Hinton and Yann LeCun, Bengio is famous for championing a technique known as deep learning that in recent years has gone from an academic curiosity to one of the most powerful technologies on the planet.

Deep learning involves feeding data to large neural networks that crudely simulate the human brain, and it has proved incredibly powerful and effective for all sorts of practical tasks, from voice recognition and image classification to controlling self-driving cars and automating business decisions.

Bengio has resisted the lure of any big tech company. While Hinton and LeCun joined Google and Facebook, respectively, he remains a full-time professor at the University of Montreal. (He did, however, cofound Element AI in 2016, and it has built a very successful business helping big companies explore the commercial applications of AI research.)

Bengio met with MIT Technology Review’s senior editor for AI, Will Knight, at an MIT event recently.

What do you make of the idea that there’s an AI race between different countries?

I don’t like it. I don’t think it’s the right way to do it.

We could collectively participate in a race, but as a scientist and somebody who wants to think about the common good, I think we’re better off thinking about how to both build smarter machines and make sure AI is used for the well-being of as many people as possible.

 

 
 

EXCLUSIVE: Chinese scientists are creating CRISPR babies — from technologyreview.com by Antonio Regalado
A daring effort is under way to create the first children whose DNA has been tailored using gene editing.

Excerpt:

When Chinese researchers first edited the genes of a human embryo in a lab dish in 2015, it sparked global outcry and pleas from scientists not to make a baby using the technology, at least for the present.

It was the invention of a powerful gene-editing tool, CRISPR, which is cheap and easy to deploy, that made the birth of humans genetically modified in an in vitro fertilization (IVF) center a theoretical possibility.

Now, it appears it may already be happening.

 

Where some see a new form of medicine that eliminates genetic disease, others see a slippery slope to enhancements, designer babies, and a new form of eugenics. 

 

 

Combining retrieval, spacing, and feedback boosts STEM learning — from retrievalpractice.org

Punchline:
Scientists demonstrated that when college students used a quizzing program that combined retrieval practice, spacing, and feedback, exam performance increased by nearly a letter grade.

—-

Abstract
The most effective educational interventions often face significant barriers to widespread implementation because they are highly specific, resource intense, and/or comprehensive. We argue for an alternative approach to improving education: leveraging technology and cognitive science to develop interventions that generalize, scale, and can be easily implemented within any curriculum. In a classroom experiment, we investigated whether three simple, but powerful principles from cognitive science could be combined to improve learning. Although implementation of these principles only required a few small changes to standard practice in a college engineering course, it significantly increased student performance on exams. Our findings highlight the potential for developing inexpensive, yet effective educational interventions that can be implemented worldwide.

In summary, the combination of spaced retrieval practice and required feedback viewing had a powerful effect on student learning of complex engineering material. Of course, the principles from cognitive science could have been applied without the use of technology. However, our belief is that advances in technology and ideas from machine learning have the potential to exponentially increase the effectiveness and impact of these principles. Automation is an important benefit, but technology also can provide a personalized learning experience for a rapidly growing, diverse body of students who have different knowledge and academic backgrounds. Through the use of data mining, algorithms, and experimentation, technology can help us understand how best to implement these principles for individual learners while also producing new discoveries about how people learn. Finally, technology facilitates access. Even if an intervention has a small effect size, it can still have a substantial impact if broadly implemented. For example, aspirin has a small effect on preventing heart attacks and strokes when taken regularly, but its impact is large because it is cheap and widely available. The synergy of cognitive science, machine learning, and technology has the potential to produce inexpensive, but powerful learning tools that generalize, scale, and can be easily implemented worldwide.

Keywords: Education. Technology. Retrieval practice. Spacing. Feedback. Transfer of learning.

 

 

Looking for something?

Use the form below to search the site:

Still not finding what you're looking for? Drop a comment on a post or contact us so we can take care of it!

© 2019 | Daniel Christian