A Space for Learning: A review of research on active learning spaces — from by Robert Talbert and Anat Mor-Avi

Abstract:
Active Learning Classrooms (ALCs) are learning spaces specially designed to optimize the practice of active learning and amplify its positive effects in learners from young children through university-level learners. As interest in and adoption of ALCs has increased rapidly over the last decade, the need for grounded research in their effects on learners and schools has grown proportionately. In this paper, we review the peer-reviewed published research on ALCs, dating back to the introduction of “studio” classrooms and the SCALE-UP program up to the present day. We investigate the literature and summarize findings on the effects of ALCs on learning outcomes, student engagement, and the behaviors and practices of instructors as well as the specific elements of ALC design that seem to contribute the most to these effects. We also look at the emerging cultural impact of ALCs on institutions of learning, and we examine the drawbacks of the published research as well as avenues for potential future research in this area.

 

1: Introduction
1.1: What is active learning, and what is an active learning classroom?
Active learning is defined broadly to include any pedagogical method that involves students actively working on learning tasks and reflecting on their work, apart from watching, listening, and taking notes (Bonwell & Eison, 1991). Active learning has taken hold as a normative instructional practice in K12 and higher education institutions worldwide. Recent studies, such as the 2014 meta-analysis linking active learning pedagogies with dramatically reduced failure rates in university-level STEM courses (Freeman et al., 2014) have established that active learning drives increased student learning and engagement across disciplines, grade levels, and demographics.

As schools, colleges, and universities increasingly seek to implement active learning, concerns about the learning spaces used for active learning have naturally arisen. Attempts to implement active learning pedagogies in spaces that are not attuned to the particular needs of active learning — for example, large lecture halls with fixed seating — have resulted in suboptimal results and often frustration among instructors and students alike. In an effort to link architectural design to best practices in active learning pedagogy, numerous instructors, school leaders, and architects have explored how learning spaces can be differently designed to support active learning and amplify its positive effects on student learning. The result is a category of learning spaces known as Active Learning Classrooms (ALCs).

While there is no universally accepted definition of an ALC, the spaces often described by this term have several common characteristics:

  • ALCs are classrooms, that is, formal spaces in which learners convene for educational activities. We do not include less-formal learning spaces such as faculty offices, library study spaces, or “in-between” spaces located in hallways or foyers.
  • ALCs include deliberate architectural and design attributes that are specifically intended to promote active learning. These typically include moveable furniture that can be reconfigured into a variety of different setups with ease, seating that places students in small groups, plentiful horizontal and/or vertical writing surfaces such as whiteboards, and easy access to learning
    technologies (including technological infrastructure such as power outlets).
  • In particular, most ALCs have a “polycentric” or “acentric” design in which there is no clearly-defined front of the room by default. Rather, the instructor has a station which is either
    movable or located in an inconspicuous location so as not to attract attention; or perhaps there is no specific location for the instructor.
  • Finally, ALCs typically provide easy access to digital and analog tools for learning , such as multiple digital projectors, tablet or laptop computers, wall-mounted and personal whiteboards, or classroom response systems.

2.1: Research questions
The main question that this study intends to investigate is: What are the effects of the use of ALCs on student learning, faculty teaching, and institutional cultures? Within this broad overall question, we will focus on four research questions:

  1. What effects do ALCs have on measurable metrics of student academic achievement? Included in such metrics are measures such as exam scores, course grades, and learning gains on pre/post-test measures, along with data on the acquisition of “21st Century Skills”, which we will define using a framework (OCDE, 2009) which groups “21st Century Skills” into skills pertaining to information, communication, and ethical/social impact.
  2. What effects do ALCs have on student engagement? Specifically, we examine results pertaining to affective, behavioral, and cognitive elements of the idea of “engagement” as well as results that cut across these categories.
  3. What effect do ALCs have on the pedagogical practices and behaviors of instructors? In addition to their effects on students, we are also interested the effects of ALCs on the instructors who use them. Specifically, we are interested in how ALCs affect instructor attitudes toward and implementations of active learning, how ALCs influence faculty adoption of active learning pedagogies, and how the use of ALCs affects instructors’ general and environmental behavior.
  4. What specific design elements of ALCs contribute significantly to the above effects? Finally, we seek to identify the critical elements of ALCs that contribute the most to their effects on student learning and instructor performance, including affordances and elements of design, architecture, and technology integration.

 

Active Learning Classrooms (ALCs)

 

 

The common denominator in the larger cultural effects of ALCs and active learning on students and instructors is the notion of connectedness, a concept we have already introduced in discussions of specific ALC design elements. By being freer to move and have physical and visual contact with each other in a class meeting, students feel more connected to each other and more connected to their instructor. By having an architectural design that facilitates not only movement but choice and agency — for example, through the use of polycentric layouts and reconfigurable furniture — the line between instructor and students is erased, turning the ALC into a vessel in which an authentic community of learners can take form.

 

 

 

 

2018 Students and Technology Research Study — from library.educause.edu

Topics Covered

  • Device access, use, and importance to academic success
  • Campus Wi-Fi experiences
  • Learning management system use and satisfaction
  • Student learning environment preferences
  • Experiences with instructors and technology
  • Commuter students and internet access
  • Student online activities
  • Institutional awareness of student disability and accessibility
  • Student use and assessment of success tools

 

MIT plans $1B computing college, AI research effort — from educationdive.com by James Paterson

Dive Brief (emphasis DSC):

  • The Massachusetts Institute of Technology is creating a College of Computing with the help of a $350 million gift from billionaire investor Stephen A. Schwarzman, who is the CEO and co-founder of the private equity firm Blackstone, in a move the university said is its “most significant reshaping” since 1950.
  • Featuring 50 new faculty positions and a new headquarters building, the $1 billion interdisciplinary initiative will bring together computer science, artificial intelligence (AI), data science and related programs across the institution. MIT will establish a new deanship for the college.
  • The new college…will explore and promote AI’s use in non-technology disciplines with a focus on ethical considerations, which are a growing concern as the technology becomes embedded in many fields.

 

Also see:

Alexa Sessions You Won’t Want to Miss at AWS re:Invent 2018 — from developer.amazon.com

Excerpts — with an eye towards where this might be leading in terms of learning spaces:

Alexa and AWS IoT — Voice is a natural interface to interact not just with the world around us, but also with physical assets and things, such as connected home devices, including lights, thermostats, or TVs. Learn how you can connect and control devices in your home using the AWS IoT platform and Alexa Skills Kit.

Connect Any Device to Alexa and Control Any Feature with the Updated Smart Home Skill API — Learn about the latest update to the Smart Home Skill API, featuring new capability interfaces you can use as building blocks to connect any device to Alexa, including those that fall outside of the traditional smart home categories of lighting, locks, thermostats, sensors, cameras, and audio/video gear. Start learning about how you can create a smarter home with Alexa.

Workshop: Build an Alexa Skill with Multiple Models — Learn how to build an Alexa skill that utilizes multiple interaction models and combines functionality into a single skill. Build an Alexa smart home skill from scratch that implements both custom interactions and smart home functionality within a single skill. Check out these resources to start learning:

 

Multitasking is actually kind of a problem — for kids and adults — from washingtonpost.com by Hayley Tsukayama

Excerpt:

Multitasking is a problem in a couple of ways, Robb said, citing recent neuroscience research on the practice. “Many people think multitasking does not hamper your ability to get things done,” he said. “But multitasking can decrease your ability to get things done well, because you have to reorient. That causes a certain level of cognitive fatigue, which can slow the rate of work.”

 

But Michael Robb, the group’s director of research, said multitasking should no longer be seen as “some desirable trait that makes you the best 21st-century worker.”

 

 

 

 

From DSC to teachers and professors:
Should these posters be in your classroom? The posters each have a different practice such as:

  • Spaced practice
  • Retrieval practice
  • Elaboration
  • Interleaving
  • Concrete examples
  • Dual coding

That said, I could see how all of that information could/would be overwhelming to some students and/or the more technical terms could bore them or fly over their heads. So perhaps you could boil down the information to feature excerpts from the top sections only that put the concepts into easier to digest words such as:

  • Practice bringing information to mind
  • Switch between ideas while you study
  • Combine words and visuals
  • Etc. 

 

Learn how to study using these practices

 

 

How much research has been done on flipped learning? Annual update for 2018 –from rtalbert-org.cdn.ampproject.org by Robert Talbert

Excerpt:

It’s now a tradition here at my blog to do an annual update of my answer to the common question, How much research is out there about flipped learning? I first posted about this two years ago after my book was published, and updated it last June to include info on 2016 and make some predictions about 2017. I’ve gone through and done it again this year, and I’d like to share the results of publication on flipped learning in 2017 and make some more predictions.

 

The amount of research on flipped learning is mainly since 2014

 

Taking the mid-2018 numbers into account, which bring the publication grand total up to 271, this means that over half the research that has ever been published on flipped learning has been published in the last 18 months (i.e. in 2017 and 2018); over two-thirds of it in the last two and a half years; and almost 90% of it in the last three and a half years.

 

 

 

 

How artificial intelligence is transforming legal research — from abovethelaw.com by David Lat

Excerpt:

Technology and innovation are transforming the legal profession in manifold ways. According to Professor Richard Susskind, author of The Future of Law, “Looking 30 years ahead, I think it unimaginable that our legal systems will not undergo vast change.” Indeed, this revolution is already underway – and to serve their clients effectively and ethically, law firms must adapt to these changing realities.

One thing that remains unchanged, however, is the importance of legal research. In the words of Don MacLeod, Manager of Knowledge Management at Debevoise & Plimpton and author of How to Find Out Anything and The Internet Guide for the Legal Researcher:

As lawyers, you need to be on top of the current legal landscape. Legal research will allow you to advise your client on the standards of the law at this moment, whether they come from case law, statutes, or regulations.

The importance of legal research persists, but how it’s conducted is constantly advancing and evolving. Just as attorneys who used hard-copy books for all of their legal research would be amazed by online legal research services like Westlaw, attorneys using current services will be amazed by the research tools of tomorrow, powered by artificial intelligence and analytics.

 

 

 

 

From DSC:
I just found out about the work going out at LearningScientists.org.

I was very impressed after my initial review of their materials! What I really appreciate about their work is that they are serious in identifying some highly effective means of how we learn best — pouring over a great deal of research in order to do so. But they don’t leave things there. They help translate that research into things that teachers can then try out in the classroom. This type of practical, concrete help is excellent and needed!

  • Daniel Willingham and some of his colleagues take research and help teachers apply it as well
  • Another person who does this quite well is Pooja Agarwal, an Assistant Professor, Cognitive Scientist, & former K-12 Teacher. Pooja is teaming up with Patrice Bain to write a forthcoming book entitled, Powerful Teaching: Unleash the Science of Learning!  She founded and operates the RetrievalPractice.org site.)

From the LearningScientists.org website (emphasis DSC):

We are cognitive psychological scientists interested in research on education. Our main research focus is on the science of learning. (Hence, “The Learning Scientists”!)

Our Vision is to make scientific research on learning more accessible to students, teachers, and other educators.

Click the button below to learn more about us. You can also check out our social media pages: FacebookTwitterInstagram, & Tumblr.

 

They have a solid blog, podcast, and some valuable downloadable content.

 

 

 

In the downloadable content area, the posters that they’ve created (or ones like them) should be posted at every single facility where learning occurs — K-12 schools, community colleges, colleges, universities, libraries of all kinds, tutoring centers, etc. It may be that such posters — and others like them that encourage the development of metacognitive skills of our students — are out there. I just haven’t run into them.

For example, here’s a poster on learning how to study using spaced practice:

 

 

 

 

Anyway, there’s some great work out there at LearningScientists.org!

 

 


Also relevant here, see:

 

 

 

 

 

 

Below are some excerpted slides from her presentation…

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Also see:

  • 20 important takeaways for learning world from Mary Meeker’s brilliant tech trends – from donaldclarkplanb.blogspot.com by Donald Clark
    Excerpt:
    Mary Meeker’s slide deck has a reputation of being the Delphic Oracle of tech. But, at 294 slides it’s a lot to take in. Don’t worry, I’ve been through them all. It has tons on economic stuff that is of marginal interest to education and training but there’s plenty to to get our teeth into. We’re not immune to tech trends, indeed we tend to follow in lock-step, just a bit later than everyone else. Among the data are lots of fascinating insights that point the way forward in terms of what we’re likely to be doing over the next decade. So here’s a really quick, top-end summary for folk in the learning game.

 

“Educational content usage online is ramping fast” with over 1 billion daily educational videos watched. There is evidence that use of the Internet for informal and formal learning is taking off.

 

 

 

 

 

 

10 Big Takeaways From Mary Meeker’s Widely-Read Internet Report — from fortune.com by  Leena Rao

 

 

 

 

 

“Retrieval practice” is a learning strategy where we focus on getting information out. Through the act of retrieval, or calling information to mind, our memory for that information is strengthened and forgetting is less likely to occur. Retrieval practice is a powerful tool for improving learning without more technology, money, or class time.

On this website (and in our free Retrieval Practice Guide), we discuss how to use retrieval practice to improve learning. Established by nearly 100 years of research, retrieval practice is a simple and powerful technique to transform teaching and learning.

In order to improve learning, we must approach it through a new lens – let’s focus not on getting information “in,” but on getting information “out.”

 

 

What is retrieval practice?
Retrieval practice is a strategy in which bringing information to mind enhances and boosts learning. Deliberately recalling information forces us to pull our knowledge “out” and examine what we know.

For instance, recalling an answer to a science question improves learning to a greater extent than looking up the answer in a textbook. And having to actually recall and write down an answer to a flashcard improves learning more than thinking that you know the answer and flipping the card over prematurely.

Often, we think we’ve learned some piece of information, but we come to realize we struggle when we try to recall the answer. It’s precisely this “struggle” or challenge that improves our memory and learning – by trying to recall information, we exercise or strengthen our memory, and we can also identify gaps in our learning.

Note that cognitive scientists used to refer to retrieval practice as “the testing effect.” Prior research examined the fascinating finding that tests (or short quizzes) dramatically improve learning. More recently, researchers have demonstrated that more than simply tests and quizzes improve learning: flashcards, practice problems, writing prompts, etc. are also powerful tools for improving learning. 

Whether this powerful strategy is called retrieval practice or the testing effect, it is important to keep in mind that the act of pulling information “out” from our minds dramatically improves learning, not the tests themselves. In other words retrieval is the active process we engage in to boost learning; tests and quizzes are merely methods to promote retrieval.

 

 

Also on that site:

 

 

Learn more about this valuable book with our:

 

 

Also on that site:

 

 

Excerpt from the Interleaved Mathematics Practice guide (on page 8 of 13):

Interleaved practice gives students a chance to choose a strategy.
When practice problems are arranged so that consecutive problems cannot be solved by the same strategy, students are forced to choose a strategy on the basis of the problem itself. This gives students a chance to both choose and use a strategy.

Interleaved practice works.
In several randomized control studies, students who received mostly interleaved practice scored higher on a final test than did students who received mostly blocked practice.

 

 

 



From DSC:
Speaking of resources regarding learning…why don’t we have posters in all of our schools, colleges, community colleges, universities, vocational training centers, etc. that talk about the most effective strategies to learn about new things?



 

 

 

Looking for something?

Use the form below to search the site:

Still not finding what you're looking for? Drop a comment on a post or contact us so we can take care of it!

© 2018 | Daniel Christian