The world is changing. Here’s how companies must adapt. — from weforum.org by Joe Kaeser, President and Chief Executive Officer, Siemens AG

Excerpts (emphasis DSC):

Although we have only seen the beginning, one thing is already clear: the Fourth Industrial Revolution is the greatest transformation human civilization has ever known. As far-reaching as the previous industrial revolutions were, they never set free such enormous transformative power.

The Fourth Industrial Revolution is transforming practically every human activity...its scope, speed and reach are unprecedented.

Enormous power (Insert from DSC: What I was trying to get at here) entails enormous risk. Yes, the stakes are high. 

 

“And make no mistake about it: we are now writing the code that will shape our collective future.” CEO of Siemens AG

 

 

Contrary to Milton Friedman’s maxim, the business of business should not just be business. Shareholder value alone should not be the yardstick. Instead, we should make stakeholder value, or better yet, social value, the benchmark for a company’s performance.

Today, stakeholders…rightfully expect companies to assume greater social responsibility, for example, by protecting the climate, fighting for social justice, aiding refugees, and training and educating workers. The business of business should be to create value for society.

This seamless integration of the virtual and the physical worlds in so-called cyber-physical systems – that is the giant leap we see today. It eclipses everything that has happened in industry so far. As in previous industrial revolutions but on a much larger scale, the Fourth Industrial Revolution will eliminate millions of jobs and create millions of new jobs.

 

“…because the Fourth Industrial Revolution runs on knowledge, we need a concurrent revolution in training and education.

If the workforce doesn’t keep up with advances in knowledge throughout their lives, how will the millions of new jobs be filled?” 

Joe Kaeser, President and Chief Executive Officer, Siemens AG

 

 


From DSC:
At least three critically important things jump out at me here:

  1. We are quickly approaching a time when people will need to be able to reinvent themselves quickly and cost-effectively, especially those with families and who are working in their (still existing) jobs. (Or have we already entered this period of time…?)
  2. There is a need to help people identify which jobs are safe to reinvent themselves to — at least for the next 5-10 years.
  3. Citizens across the globe — and their relevant legislatures, governments, and law schools — need to help close the gap between emerging technologies and whether those technologies should even be rolled out, and if so, how and with which features.

 


 

What freedoms and rights should individuals have in the digital age?

Joe Kaeser, President and Chief Executive Officer, Siemens AG

 

 

5 questions we should be asking about automation and jobs — from hbr.org by Jed Kolko

Excerpts:

  1. Will workers whose jobs are automated be able to transition to new jobs?*
  2. Who will bear the burden of automation?
  3. How will automation affect the supply of labor?
  4. How will automation affect wages, and how will wages affect automation?
  5. How will automation change job searching?

 

From DSC:
For those Economics profs and students out there, I’m posted this with you in mind; also highly applicable and relevant to MBA programs.

* I would add a few follow-up questions to question #1 above:

  • To which jobs should they transition to?
  • Who can help identify the jobs that might be safe for 5-10 years?
  • If you have a family to feed, how are you going to be able to reinvent yourself quickly and as efficiently/flexibly as possible? (Yes…constant, online-based learning comes to my mind as well, as campus-based education is great, but very time-consuming.)

 

Also see:

We Still Don’t Know Much About the Jobs the AI Economy Will Make — or Take — from medium.com by Rachel Metz with MIT Technology Review
Experts think companies need to invest in workers the way they do for other core aspects of their business they’re looking to future-proof

One big problem that could have lasting effects, she thinks, is a mismatch between the skills companies need in new employees and those that employees have or know that they can readily acquire. To fix this, she said, companies need to start investing in their workers the way they do their supply chains.

 

Per LinkedIn:

Putting robots to work is becoming more and more popularparticularly in Europe. According to the European Bank for Reconstruction and Development, Slovakian workers face a 62% median probability that their job will be automated “in the near future.” Workers in Eastern Europe face the biggest likelihood of having their jobs overtaken by machines, with the textile, agriculture and manufacturing industries seen as the most vulnerable. • Here’s what people are saying.

 

Robot Ready: Human+ Skills for the Future of Work — from economicmodeling.com

Key Findings

In Robot-Ready, we examine several striking insights:

1. Human skills—like leadership, communication, and problem solving—are among the most in-demand skills in the labor market.

2. Human skills are applied differently across career fields. To be effective, liberal arts grads must adapt their skills to the job at hand.

3. Liberal art grads should add technical skills. There is considerable demand for workers who complement their human skills with basic technical skills like data analysis and digital fluency.

4. Human+ skills are at work in a variety of fields. Human skills help liberal arts grads thrive in many career areas, including marketing, public relations, technology, and sales.

 

 

 

The top learning trends for 2019: Towards a digital-human workforce — from hrdive.com; a sponsored posting by Shelley Osborne, Head of L&D at Udemy

Excerpt:

New digital technologies like artificial intelligence (AI) and automation tools are rapidly changing the way we work, develop products, and interact with our customers. Intelligent automation tools augment what people do at work and will redefine what’s possible.

As organizations navigate this complex digital transformation, learning & development (L&D) leaders are tasked with keeping employees up to speed with the ever-evolving skills ecosystem.

To uncover emerging trends and predict what’s required for 2019, we surveyed 400 L&D leaders to find out what they’re doing to prepare their workforce for this digital transformation.

 

With the rise of automation, the world of work is experiencing the largest job transition since the shift from agriculture to manufacturing jobs during the Industrial Revolution. By 2030, as many as 375 million workers—or roughly 14 percent of the global workforce—may need to switch occupational categories as digitization, automation, and advances in artificial intelligence disrupt the world of work,” according to McKinsey Global Institute.

 

GM to lay off 15 percent of salaried workers, halt production at five plants in U.S. and Canada — from washingtonpost.com by Taylor Telford

Excerpts:

Amid global restructuring, General Motors announced Monday it would reduce its North American production and salaried and executive workforce

These changes are part of GM’s efforts to focus its resources on self-driving and electric vehicles, as well as more efficient trucks, crossovers and SUVs, the company said in a statement.

The company also said it will cut 15 percent of its salaried workforce, laying off 25 percent of its executives to “streamline decision-making.” GM also said it will close two plants outside North America by the end of 2019. Those locations have yet to be announced.

 

From DSC to students:
Take note of this. If you’re heading for the corporate world (and other arenas as well these days), be ready for constant change. Always keep learning in order to stay marketable. In addition, hopefully you’ll be pulse checking the relevant landscapes along the way to minimize getting broadsided. Look for signs of what’s coming down the pike and develop some potential scenarios — and your plans/responses to those scenarios.

 

 

LinkedIn Learning Opens Its Platform (Slightly) [Young]

LinkedIn Learning Opens Its Platform (Slightly) — from edsurge by Jeff Young

Excerpt (emphasis DSC):

A few years ago, in a move toward professional learning, LinkedIn bought Lynda.com for $1.5 billion, adding the well-known library of video-based courses to its professional social network. Today LinkedIn officials announced that they plan to open up their platform to let in educational videos from other providers as well—but with a catch or two.

The plan, announced Friday, is to let companies or colleges who already subscribe to LinkedIn Learning add content from a select group of other providers. The company or college will still have to subscribe to those other services separately, so it’s essentially an integration—but it does mark a change in approach.

For LinkedIn, the goal is to become the front door for employees as they look for micro-courses for professional development.

 

LinkedIn also announced another service for its LinkedIn Learning platform called Q&A, which will give subscribers the ability to pose a question they have about the video lessons they’re taking. The question will first be sent to bots, but if that doesn’t yield an answer the query will be sent on to other learners, and in some cases the instructor who created the videos.

 

 

Also see:

LinkedIn becomes a serious open learning experience platform — from clomedia.com by Josh Bersin
LinkedIn is becoming a dominant learning solution with some pretty interesting competitive advantages, according to one learning analyst.

Excerpt:

LinkedIn has become quite a juggernaut in the corporate learning market. Last time I checked the company had more than 17 million users, 14,000 corporate customers, more than 3,000 courses and was growing at high double-digit rates. And all this in only about two years.

And the company just threw down the gauntlet; it’s now announcing it has completely opened up its learning platform to external content partners. This is the company’s formal announcement that LinkedIn Learning is not just an amazing array of content, it is a corporate learning platform. The company wants to become a single place for all organizational learning content.

 

LinkedIn now offers skills-based learning recommendations to any user through its machine learning algorithms. 

 

 



Is there demand for staying relevant? For learning new skills? For reinventing oneself?

Well…let’s see.

 

 

 

 

 

 



From DSC:
So…look out higher ed and traditional forms of accreditation — your window of opportunity may be starting to close. Alternatives to traditional higher ed continue to appear on the scene and gain momentum. LinkedIn — and/or similar organizations in the future — along with blockchain and big data backed efforts may gain traction in the future and start taking away some major market share. If employers get solid performance from their employees who have gone this route…higher ed better look out. 

Microsoft/LinkedIn/Lynda.com are nicely positioned to be a major player who can offer society a next generation learning platform at an incredible price — offering up-to-date, microlearning along with new forms of credentialing. It’s what I’ve been calling the Amazon.com of higher ed (previously the Walmart of Education) for ~10 years. It will take place in a strategy/platform similar to this one.

 



Also, this is what a guerilla on the back looks like:

 

This is what a guerilla on the back looks like!

 



Also see:

  • Meet the 83-Year-Old App Developer Who Says Edtech Should Better Support Seniors — from edsurge.com by Sydney Johnson
    Excerpt (emphasis DSC):
    Now at age 83, Wakamiya beams with excitement when she recounts her journey, which has been featured in news outlets and even at Apple’s developer conference last year. But through learning how to code, she believes that experience offers an even more important lesson to today’s education and technology companies: don’t forget about senior citizens.Today’s education technology products overwhelmingly target young people. And while there’s a growing industry around serving adult learners in higher education, companies largely neglect to consider the needs of the elderly.

 

 
 

The global companies that failed to adapt to change. — from trainingmag.com by Professor M.S. Rao, Ph.D.

Excerpt:

Eastman Kodak, a leader for many years, filed for bankruptcy in 2012. Blockbuster Video became defunct in 2013. Similarly, Borders — one of the largest book retailers in the U.S. — went out of business in 2011. Why did these companies, which once had great brands, ultimately fail? It is because they failed to adapt to change. Additionally, they failed to unlearn and relearn.

Former GE CEO Jack Welch once remarked, “If the rate of change on the outside exceeds the rate of change on the inside, the end is near.” Thus, accept change before the change is thrust on you.

Leaders must adopt tools and techniques to adapt to change. Here is a blueprint to embrace change effectively:

  • Keep the vision right and straight, and articulate it effectively.
  • Create organizational culture conducive to bring about change.
  • Communicate clearly about the need to change.
  • Enlighten people about the implications of the status quo.
  • Show them benefits once the change is implemented.
  • Coordinate all stakeholders effectively.
  • Remove the roadblocks by allaying their apprehensions.
  • Show them small gains to ensure that entire change takes place smoothly without any resistance.

 

From DSC:
Though I’m not on board with all of the perspectives in that article, institutions of traditional higher education likely have something to learn from the failures of these companies….while there’s still time to change and to innovate. 

 

 

Academics Propose a ‘Blockchain University,’ Where Faculty (and Algorithms) Rule — from edsurge.com by Jeff Young

Excerpt:

A group of academics affiliated with Oxford University have proposed a new model of higher education that replaces traditional administrators with “smart contracts” on the blockchain, the same technology that drives Bitcoin and other cryptocurrencies.

“Our aim is to create a university in which the bulk of administrative tasks are either eliminated or progressively automated,” said the effort’s founders in a white paper released earlier this year. Those proposing the idea added the university would be “a decentralised, non-profit, democratic community in which the use of blockchain technology will provide the contractual stability needed to pursue a full course of study.”

Experiments with blockchain in higher education are underway at multiple campuses around the country, and many of researchers are looking into how to use the technology to verify and deliver credentials. Massachusetts Institute for Technology, for example, began issuing diplomas via blockchain last year.

The plan by Oxford researchers goes beyond digital diplomas—and beyond many typical proposals to disrupt education in general. It argues for a completely new framework for how college is organized, how professors are paid, and how students connect with learning. In other words, it’s a long shot.

But even if the proposed platform never emerges, it is likely to spur debates about whether blockchain technology could one day allow professors to reclaim greater control of how higher education operates through digital contracts.

 

The platform would essentially allow professors to organize their own colleges, and teach and take payments from students directly. “

 

 

 

Reflections on “Inside Amazon’s artificial intelligence flywheel” [Levy]

Inside Amazon’s artificial intelligence flywheel — from wired.com by Steven Levy
How deep learning came to power Alexa, Amazon Web Services, and nearly every other division of the company.

Excerpt (emphasis DSC):

Amazon loves to use the word flywheel to describe how various parts of its massive business work as a single perpetual motion machine. It now has a powerful AI flywheel, where machine-learning innovations in one part of the company fuel the efforts of other teams, who in turn can build products or offer services to affect other groups, or even the company at large. Offering its machine-learning platforms to outsiders as a paid service makes the effort itself profitable—and in certain cases scoops up yet more data to level up the technology even more.

It took a lot of six-pagers to transform Amazon from a deep-learning wannabe into a formidable power. The results of this transformation can be seen throughout the company—including in a recommendations system that now runs on a totally new machine-learning infrastructure. Amazon is smarter in suggesting what you should read next, what items you should add to your shopping list, and what movie you might want to watch tonight. And this year Thirumalai started a new job, heading Amazon search, where he intends to use deep learning in every aspect of the service.

“If you asked me seven or eight years ago how big a force Amazon was in AI, I would have said, ‘They aren’t,’” says Pedro Domingos, a top computer science professor at the University of Washington. “But they have really come on aggressively. Now they are becoming a force.”

Maybe the force.

 

 

From DSC:
When will we begin to see more mainstream recommendation engines for learning-based materials? With the demand for people to reinvent themselves, such a next generation learning platform can’t come soon enough!

  • Turning over control to learners to create/enhance their own web-based learner profiles; and allowing people to say who can access their learning profiles.
  • AI-based recommendation engines to help people identify curated, effective digital playlists for what they want to learn about.
  • Voice-driven interfaces.
  • Matching employees to employers.
  • Matching one’s learning preferences (not styles) with the content being presented as one piece of a personalized learning experience.
  • From cradle to grave. Lifelong learning.
  • Multimedia-based, interactive content.
  • Asynchronously and synchronously connecting with others learning about the same content.
  • Online-based tutoring/assistance; remote assistance.
  • Reinvent. Staying relevant. Surviving.
  • Competency-based learning.

 

The Living [Class] Room -- by Daniel Christian -- July 2012 -- a second device used in conjunction with a Smart/Connected TV

 

 

 

 

 

 

 

We’re about to embark on a period in American history where career reinvention will be critical, perhaps more so than it’s ever been before. In the next decade, as many as 50 million American workers—a third of the total—will need to change careers, according to McKinsey Global Institute. Automation, in the form of AI (artificial intelligence) and RPA (robotic process automation), is the primary driver. McKinsey observes: “There are few precedents in which societies have successfully retrained such large numbers of people.”

Bill Triant and Ryan Craig

 

 

 

Also relevant/see:

Online education’s expansion continues in higher ed with a focus on tech skills — from educationdive.com by James Paterson

Dive Brief:

  • Online learning continues to expand in higher ed with the addition of several online master’s degrees and a new for-profit college that offers a hybrid of vocational training and liberal arts curriculum online.
  • Inside Higher Ed reported the nonprofit learning provider edX is offering nine master’s degrees through five U.S. universities — the Georgia Institute of Technology, the University of Texas at Austin, Indiana University, Arizona State University and the University of California, San Diego. The programs include cybersecurity, data science, analytics, computer science and marketing, and they cost from around $10,000 to $22,000. Most offer stackable certificates, helping students who change their educational trajectory.
  • Former Harvard University Dean of Social Science Stephen Kosslyn, meanwhile, will open Foundry College in January. The for-profit, two-year program targets adult learners who want to upskill, and it includes training in soft skills such as critical thinking and problem solving. Students will pay about $1,000 per course, though the college is waiving tuition for its first cohort.

 

 

 

 

In the 2030 and beyond world, employers will no longer be a separate entity from the education establishment. Pressures from both the supply and demand side are so large that employers and learners will end up, by default, co-designing new learning experiences, where all learning counts.

 

OBJECTIVES FOR CONVENINGS

  • Identify the skills everyone will need to navigate the changing relationship between machine intelligence and people over the next 10-12 years.
  • Develop implications for work, workers, students, working learners, employers, and policymakers.
  • Identify a preliminary set of actions that need to be taken now to best prepare for the changing work + learn ecosystem.

Three key questions guided the discussions:

  1. What are the LEAST and MOST essential skills needed for the future?
  2. Where and how will tomorrow’s workers and learners acquire the skills they really need?
  3. Who is accountable for making sure individuals can thrive in this new economy?

This report summarizes the experts’ views on what skills will likely be needed to navigate the work + learn ecosystem over the next 10–15 years—and their suggested steps for better serving the nation’s future needs.

 

In a new world of work, driven especially by AI, institutionally-sanctioned curricula could give way to AI-personalized learning. This would drastically change the nature of existing social contracts between employers and employees, teachers and students, and governments and citizens. Traditional social contracts would need to be renegotiated or revamped entirely. In the process, institutional assessment and evaluation could well shift from top-down to new bottom-up tools and processes for developing capacities, valuing skills, and managing performance through new kinds of reputation or accomplishment scores.

 

In October 2017, Chris Wanstrath, CEO of Github, the foremost code-sharing and social networking resource for programmers today, made a bold statement: “The future of coding is no coding at all.” He believes that the writing of code will be automated in the near future, leaving humans to focus on “higher-level strategy and design of software.” Many of the experts at the convenings agreed. Even creating the AI systems of tomorrow, they asserted, will likely require less human coding than is needed today, with graphic interfaces turning AI programming into a drag-and-drop operation.

Digital fluency does not mean knowing coding languages. Experts at both convenings contended that effectively “befriending the machine” will be less about teaching people to code and more about being able to empathize with AIs and machines, understanding how they “see the world” and “think” and “make decisions.” Machines will create languages to talk to one another.

Here’s a list of many skills the experts do not expect to see much of—if at all—in the future:

  • Coding. Systems will be self-programming.
  • Building AI systems. Graphic interfaces will turn AI programming into drag-and-drop operations.
  • Calendaring, scheduling, and organizing. There won’t be need for email triage.
  • Planning and even decision-making. AI assistants will pick this up.
  • Creating more personalized curricula. Learners may design more of their own personalized learning adventure.
  • Writing and reviewing resumes. Digital portfolios, personal branding, and performance reputation will replace resumes.
  • Language translation and localization. This will happen in real time using translator apps.
  • Legal research and writing. Many of our legal systems will be automated.
  • Validation skills. Machines will check people’s work to validate their skills.
  • Driving. Driverless vehicles will replace the need to learn how to drive.

Here’s a list of the most essential skills needed for the future:

  • Quantitative and algorithmic thinking.  
  • Managing reputation.  
  • Storytelling and interpretive skills.  
  • First principles thinking.  
  • Communicating with machines as machines.  
  • Augmenting high-skilled physical tasks with AI.
  • Optimization and debugging frame of mind.
  • Creativity and growth mindset.
  • Adaptability.
  • Emotional intelligence.
  • Truth seeking.
  • Cybersecurity.

 

The rise of machine intelligence is just one of the many powerful social, technological, economic, environmental, and political forces that are rapidly and disruptively changing the way everyone will work and learn in the future. Because this largely tech-driven force is so interconnected with other drivers of change, it is nearly impossible to understand the impact of intelligent agents on how we will work and learn without also imagining the ways in which these new tools will reshape how we live.

 

 

 

What will be important in the learn and work ecosystem in 2030? How do we prepare? — from evolllution.com by Holly Zanville | Senior Advisor for Credentialing and Workforce Development, Lumina Foundation

Excerpt:

These seven suggested actions—common to all scenarios—especially resonated with Lumina:

  1. Focus on learning: All learners will need a range of competencies and skills, most critically: learning how to learn; having a foundation in math, science, IT and cross-disciplines; and developing the behaviors of grit, empathy and effective communication.
  2. Prepare all “systems”: Schools will continue to be important places to teach competencies and skills. Parents will be important teachers for children. Workplaces will also be important places for learning, and many learners will need instruction on how to work effectively as part of human/machine teams.
  3. Integrate education and work: Education systems will need to be integrated with work in an education/work ecosystem. To enable movement within the ecosystem, credentials will be useful, but only if they are transparent and portable. The competencies and skills that stand behind credentials will need to be identifiable, using a common language to enable (a) credential providers to educate/train for an integrated education/work system; (b) employers to hire people and upgrade their skills; and (c) governments (federal/state/local) to incentivize and regulate programs and policies that support the education/work system.
  4. Assess learning: Assessing competencies and skills acquired in multiple settings and modes (including artificial reality and virtual reality tools), will be essential. AI will enable powerful new assessment tools to collect and analyze data about what humans know and can do.
  5. Build fair, moral AI: There will be a high priority on ensuring that AI has built-in checks and balances that reflect moral values and honor different cultural perspectives.
  6. Prepare for human/machine futures: Machines will join humans in homes, schools and workplaces. Machines will likely be viewed as citizens with rights. Humans must prepare for side-by-side “relationships” with machines, especially in situations in which machines will be managing aspects of education, work and life formerly managed by humans. Major questions will also arise about the ownership of AI structures—what ownership looks like, and who profits from ubiquitous AI structures.
  7. Build networks for readiness/innovation: Open and innovative partnerships will be needed for whatever future scenarios emerge. In a data-rich world, we won’t solve problems alone; networks, partnerships and communities will be key.

 

 

Also see:

 

 

10 jobs that are safe in an AI world — from linkedin.com by Kai-Fu Lee

Excerpts:

Teaching
AI will be a great tool for teachers and educational institutions, as it will help educators figure out how to personalize curriculum based on each student’s competence, progress, aptitude, and temperament. However, teaching will still need to be oriented around helping students figure out their interests, teaching students to learn independently, and providing one-on-one mentorship. These are tasks that can only be done by a human teacher. As such, there will still be a great need for human educators in the future.

Criminal defense law
Top lawyers will have nothing to worry about when it comes to job displacement. reasoning across domains, winning the trust of clients, applying years of experience in the courtroom, and having the ability to persuade a jury are all examples of the cognitive complexities, strategies, and modes of human interaction that are beyond the capabilities of AI. However, a lot of paralegal and preparatory work like document review, analysis, creating contracts, handling small cases, packing cases, and coming up with recommendations can be done much better and more efficiently with AI. The costs of law make it worthwhile for AI companies to go after AI paralegals and AI junior lawyers, but not top lawyers.

 

From DSC:
In terms of teaching, I agree that while #AI will help personalize learning, there will still be a great need for human teachers, professors, and trainers. I also agree w/ my boss (and with some of the author’s viewpoints here, but not all) that many kinds of legal work will still need the human touch & thought processes. I diverge from his thinking in terms of scope — the need for human lawyers will go far beyond just lawyers involved in crim law.

 

Also see:

15 business applications for artificial intelligence and machine learning — from forbes.com

Excerpt:

Fifteen members of Forbes Technology Council discuss some of the latest applications they’ve found for AI/ML at their companies. Here’s what they had to say…

 

 

 

What does the Top Tools for Learning 2018 list tell us about the future direction of L&D? — from modernworkplacelearning.com by Jane Hart

Excerpt:

But for me 3 key things jump out:

  1. More and more people are learning for themselves – in whatever way that suits them best – whether it is finding resources or online courses on the Web or interacting with their professional network. And they do all this for a variety of reasons: to solve problems, self-improve and prepare themselves for the future, etc.
  2. Learning at work is becoming more personal and continuous in that it is a key part of many professional’s working day. And what’s more people are not only organising their own learning activities, they are also indeed managing their own development too – either with (informal) digital notebooks, or with (formal) personal learning platforms.
  3. But it is in team collaboration where most of their daily learning takes place, and many now recognise and value the social collaboration platforms that underpin their daily interactions with colleagues as part of their daily work.

In other words, many people now see workplace learning as not just something that happens irregularly in corporate training, but as a continuous and on demand activity.

 


From DSC:
Reminds me of tapping into — and contributing towards — streams of content. All the time. Continuous, lifelong learning.

 

 


 

 

 

From DSC:
Can we please see a Saturday Night Live skit on this? It would be really interesting to see what happens to the AI based on certain facial expressions!  🙂


 

 

Excerpt (emphasis DSC):

Graduates are spending thousands of pounds on training to beat tough emotion-scanning robot interviewers for top City jobs.

Firms such as Goldman Sachs and Unilever are using artificial intelligence (AI) software to weed out candidates, as single advertised positions attract thousands of graduates.

Via a webcam, the software remotely asks preliminary-round candidates 20 minutes of questions and brain-teasers, and records eye movements, breathing patterns and any nervous tics.

 


From DSC:
But on a more serious note, getting by the Applicant Tracking Systems and AI’s of the world — in order to actually talk to a human being — is getting harder and harder to do.  


 

 

 

3 trends shaping the future world of work — from hrtechnologist.com by Becky Frankiewicz, President of Manpower Group North America

Excerpt:

In a world of constant change, continuity has given way to adaptability. It’s no secret the world of work has changed. Yet today it’s changing faster than ever before.

The impact of technology means new skills and new roles are emerging as fast as others become extinct.

My career path is a case in point. When I entered high school, I intended to follow a linear career path similar to generations before me. Pick a discipline, get a degree, commit to it, retire. Now in my fourth career, that’s not how it worked out, and I’m glad. In fact, the only true constant I’ve had is constant learning. Because success in the future won’t be defined by performance, but by potential and the ability to learn, apply and adapt.

 

From Jobs for Life to Skills for Life
Each day we see firsthand technology’s impact on jobs. 65% of the jobs my three daughters will do don’t even exist yet. Employability is less about what you already know and more about your capacity to learn. It requires a new mindset for us to develop a workforce with the right skillsets, and for individuals seeking to advance their careers. We need to be ready to help upskill and reskill people for new jobs and new roles. 

 

 

 
© 2024 | Daniel Christian