An Existential Crisis in Neuroscience— from by Grigori Guitchounts We’re mapping the brain in amazing detail—but our brain can’t understand the picture.
Excerpt:
Neuroscientists have made considerable progress toward understanding brain architecture and aspects of brain function. We can identify brain regions that respond to the environment, activate our senses, generate movements and emotions. But we don’t know how different parts of the brain interact with and depend on each other. We don’t understand how their interactions contribute to behavior, perception, or memory. Technology has made it easy for us to gather behemoth datasets, but I’m not sure understanding the brain has kept pace with the size of the datasets.
From DSC: The word “mystery” comes to my mind when I read parts of this thought-provoking article — as does the phrase “Glory to God!“.
As I’ve watched my mom slowly leave us due to Alzheimer’s (as did my grandma on her side) and as I’ve watched my good friend prepare to leave us due to cancer, I’m also reminded to be grateful for the people in my life when they’re still there. Plus, I’m reminded to be thankful for good health when I have it. It may be cliche, but it’s true. And I’ll end this posting with another one:
“One doesn’t know the worth of water until the well’s run dry.”
Scholars around the world share their latest research findings with a decidedly low-tech ritual: printing a 48-inch by 36-inch poster densely packed with charts, graphs and blocks of text describing their research hypothesis, methods and findings. Then they stand with the poster in an exhibit hall for an hour, surrounded by rows of other researchers presenting similar posters, while hundreds of colleagues from around the world walk by trying to skim the displays.
…
Not only does the exercise deflate the morale of the scholars sharing posters, the ritual is incredibly inefficient at communicating science, Morrison argues.
…
Morrison says he has a solution: A better design for those posters, plus a dash of tech.
To make up for all the nuance and detail lost in this approach, the template includes a QR code that viewers can scan to get to the full research paper.
From DSC: Wouldn’t this be great if more journal articles would do the same thing? That is, give us the key findings, conclusions (with some backbone to them), and recommendations right away! Abstracts don’t go far enough, and often scholars/specialists are talking amongst themselves…not to the world. They could have a far greater reach/impact with this kind of approach.
(The QR code doesn’t make as much sense if one is already reading the full journal article…but the other items make a great deal of sense!)
“It’s encouraging to see that a majority of students who are studying fully online are reporting great value and satisfaction with their online programs which are largely tied to ambitious career goals,” said Todd Zipper, president and CEO of Learning House, in a prepared statement. “With an increasing population of savvier consumers with high expectations, institutions need to do better at offering more quality, diverse programs that are sensitive to cost in order to keep up with the growing demands of online college students.”
From DSC: If, in the year 2019, most students say online learning is as good or better than face-to-face, what will they say come 2025? 2035?
Many people will still prefer to have F2F-based learning experiences no matter what year it is. That said, as the innovation continues to occur mainly in the digital/online/virtual realms, F2F will likely find it harder and harder to compete. My advice to current faculty members? Get experience teaching online — and do so as soon as you possibly can.
American students have changed their majors— from bloomberg.com by Justin Fox
Health professions are in, education and the humanities are out. Here are some reasons for the shift.
At the Future Today Institute, we identify emerging tech trends and map the future for our clients. This is FTI’s 12th annual Tech Trends Report, and in it we identify 315 tantalizing advancements in emerging technologies — artificial intelligence, biotech, autonomous robots, green energy and space travel — that will begin to enter the mainstream and fundamentally disrupt business, geopolitics and everyday life around the world. As of the publication date, the annual FTI Tech Trend Report report has garnered more than 7.5 cumulative views.
Key findings for 2019 (emphasis DSC)
Privacy is dead. (DC: NOT GOOD!!! If this is true, can the situation be reversed?)
Voice Search Optimization (VSO) is the new SEO.
The Big Nine.
Personal data records are coming. (DC: Including cloud-based learner profiles I hope.)
China continues to ascend, and not just in artificial intelligence.
Lawmakers around the world are not prepared to deal with new challenges that arise from emerging science and technology.
Health technology company Philips unveiled a unique mixed reality concept developed together with Microsoft Corp. for the operating room of the future. Based on the state-of-the-art technologies of Philips’Azurion image-guided therapy platform and Microsoft’s HoloLens 2 holographic computing platform, the companies will showcase novel augmented reality applications for image-guided minimally invasive therapies.
Tiny robots modeled after bacteria could be used to deliver drugs to hard to reach areas of the human body. Scientists at École polytechnique fédérale de Lausanne (EPFL) and the Swiss Federal Institute of Technology in Zurich (ETH Zurich) have developed what they call elastic microbots that can change shape depending on their environment.
Ever wish you could step into a hot air balloon, travel back in time to 320 A.D., and soar over the streets of Ancient Rome? Well, that oddly specific fantasy is achievable in a new virtual reality experience called “Rome Reborn.”
The ambitious undertaking, painstakingly built by a team of 50 academics and computer experts over a 22-year period, recreates 7,000 buildings and monuments scattered across a 5.5 square mile stretch of the famed Italian city. The project, according to Tom Kington of the Times, is being marketed as the largest digital reconstruction of Rome to date.
While the application of VR to core academics remains nascent, early returns are promising: research now suggests students retain more information and can better synthesize and apply what they have learned after participating in virtual reality exercises.
And the technology is moving within the reach of classroom teachers. While once considered high-end and cost-prohibitive, virtual reality is becoming more affordable. Discovery VR and Google Expeditions offer several virtual reality experiences for free. Simple VR viewers now come in relatively low-cost DIY cardboard view boxes, like Google Cardboard, that fit a range of VR-capable smartphones.
…
Still, teachers may remain unsure of how they might implement such cutting-edge technology in their classrooms. Their concerns are well founded. Virtual reality takes careful planning and implementation for success. It’s not simply plug-and-play technology. It also takes a lot of work to develop.
From DSC: Reduced costs & greater development efficiencies needed here:
“In our case, to create just 10 minutes of simulation, a team of six developers logged almost 1,000 hours of development time.”
See the results of a months-long effort to create a HoloLens experience that pays homage to Mont-Saint-Michel, in Normandy, France, in all its forms – as a physical relief map and work of art; as a real place visited by millions of people over the centuries; and as a remarkable digital story of resilience. In this three-part Today in Technology series, they examine how AI and mixed reality can open a new window into French culture by using technology like HoloLens.
When Chinese researchers first edited the genes of a human embryo in a lab dish in 2015, it sparked global outcry and pleas from scientists not to make a baby using the technology, at least for the present.
It was the invention of a powerful gene-editing tool, CRISPR, which is cheap and easy to deploy, that made the birth of humans genetically modified in an in vitro fertilization (IVF) center a theoretical possibility.
Now, it appears it may already be happening.
Where some see a new form of medicine that eliminates genetic disease, others see a slippery slope to enhancements, designer babies, and a new form of eugenics.
1) Augmented reality can save lives through showing defibrillators nearby
2) Google Glass might help new mothers struggling with breastfeeding
3) Patients can describe their symptoms better through augmented reality
4) Nurses can find veins easier with augmented reality
5) Motivating runners through zombies
6) Pharma companies can provide more innovative drug information
7) Augmented reality can assist surgeons in the OR
8) Google’s digital contact lens can transform how we look at the world
No doubt about it. Virtual reality isn’t just for gamers and gadget geeks anymore. In fact, as the technology gets better and cheaper, VR is the wave of the future when it comes to creating a truly memorable and effective learning experience – and for good reason.
Multiple Learning Attributes. To begin with, it empowers us to create any number of safely immersive virtual learning environments that feel and respond much as they would in real life, as students engage and explore, interact with and manipulate objects within these worlds. Imagine teleporting your students to re-enact historic battles; explore outer space; or travel the inner workings of the human body. What’s more, using sophisticated controls, they can actually “practice” complex procedures like cardiac surgery, or master difficult concepts, such as the molecular properties of brain cells.
Likewise, VR gives new meaning to the term “field trip,” by enabling students to virtually experience first-hand some of the world’s great museums, natural wonders and notable landmarks. You can also embed 360-degree objects within the virtual classroom to support course content, much as Drexel University Online is doing after assembling its one-of-a-kind VRtifacts+ repository. And you can use it to live-stream events, guest lectures and campus tours, in addition to hosting virtual community spaces where learners can meet and connect in a seemingly “real” environment.
At EduTECH Asia 2018 this week in Singapore, EON Reality spent two full days speaking, promoting, and demonstrating the latest updates to the AVR Platform to the thousands of education and technology professionals in attendance.
With a focus on how the AVR Platform can best be used in the education world, EON Reality’s discussion, ‘Augmented and Virtual Reality in Education: The Shift to Classroom 3.0,’ highlighted Wednesday’s offerings with a full presentation and hands-on demos of the new tools in Creator AVR. Over the course of both days, visitors filled the EON Reality booth to get their own one-on-one experience of Creator AVR, Virtual Trainer, and the ways in which AR Assist can help out in the classroom.
The AVR Platform’s three products are the fundamental tools of EON Reality’s Classroom 3.0 vision for the Immersed Flipped Classrooms of the future. With Creator AVR — a SaaS-based learning and content creation solution — leading the way, the AVR Platform empowers Classroom 3.0 by providing teachers and educators of all types with the tools needed to create Augmented and Virtual Reality learning modules.
Bringing Asian educators from all over the continent together, EON Reality’s presence at EduTECH showed just how significantly Augmented Reality and Virtual Reality can elevate the overall educational experience going forward. After two full days of demonstrations, EON Reality introduced the AVR Platform to approximately 1500 teachers, school administration officials, and other decision-makers in Asia’s education industry.
As the AVR Platform expands to educational markets around the world, EON Reality’s revolutionary spin on traditional learning branches into new cultures and nations. With local Singaporean educational institutions like Temasek Polytechnic already onboard, the EduTECH Asia 2018 conference marked the continued spread of Classroom 3.0 and the AVR Platform on both a regional and global level.
“We had to create an alternative that gives students the foundational experience of being in a lab where they can maneuver a microscope’s settings and adjust the images just as they would in a face-to-face environment,” said Shannon Riggs, the Ecampus director of course development and training.
Multimedia developers mounted a camera on top of an actual microscope and took pictures of what was on the slides. Using 3D modeling software, the photos were interweaved to create 3D animation. Using game development software enabled students to adjust lighting, zoom and manipulate the images, just like in a traditional laboratory. The images were programmed to create a virtual simulation.
The final product is “an interactive web application that utilizes a custom 3D microscope and incorporates animation and real-life slide photos,” according to Victor Yee, an Ecampus assistant director of course development and training.
Also see:
YouTube to Invest $20 Million in Educational Content — from campustechnology.com by Dian Schaffhauser Excerpt:
YouTube, a Google company, has announced plans to invest $20 million in YouTube Learning, an initiative hinted at during the summer. The goal: “to support education-focused creators and expert organizations that create and curate high-quality learning content on the video site.” Funding will be spent on supporting video creators who want to produce education series and wooing other education video providers to the site.
You spend weeks studying for an important test. On the big day, you wait nervously as your teacher hands it out. You’re working your way through, when you’re asked to define “ataraxia.” You know you’ve seen the word before, but your mind goes blank. What just happened? Elizabeth Cox details the complex relationship between stress and memory.
Some of the ways to reduce stress that was mentioned include:
Getting regular exercise
Getting enough sleep
Doing practice tests — especially under similar conditions; under time pressure for example
The first collaborative VR molecular modeling application was released August 29 to encourage hands-on chemistry experimentation.
The open-source tool is free for download now on Oculus and Steam.
Nanome Inc., the San Diego-based start-up that built the intuitive application, comprises UCSD professors and researchers, web developers and top-level pharmaceutical executives.
“With our tool, anyone can reach out and experience science at the nanoscale as if it is right in front of them. At Nanome, we are bringing the craftsmanship and natural intuition from interacting with these nanoscale structures at room scale to everyone,” McCloskey said.
From DSC: While VR will have its place — especially for timeswhen you need to completely immerse yourself into another environment — I think AR and MR will be much larger and have a greater variety of applications. For example, I could see where instructions on how to put something together in the future could use AR and/or MR to assist with that process. The system could highlight the next part that I’m looking for and then highlight the corresponding parts where it goes — and, if requested, can show me a clip on how it fits into what I’m trying to put together.
Workers with mixed-reality solutions that enable remote assistance, spatial planning, environmentally contextual data, and much more,” Bardeen told me. With the HoloLens Firstline Workers workers conduct their usual, day-to-day activities with the added benefit of a heads-up, hands-free, display that gives them immediate access to valuable, contextual information. Microsoft says speech services like Cortana will be critical to control along with gesture, according to the unique needs of each situation.
Expect new worker roles. What constitutes an “information worker” could change because mixed reality will allow everyone to be involved in the collection and use of information. Many more types of information will become available to any worker in a compelling, easy-to-understand way.
STEM students engaged in scientific disciplines, such as biochemistry and neuroscience, are often required by their respective degrees to spend a certain amount of time engaged in an official laboratory environment. Unfortunately, crowded universities and the rise of online education have made it difficult for these innovators-in-training to access properly equipped labs and log their necessary hours.
Cue Google VR Labs, a series of comprehensive virtual lab experiences available on the Google Daydream platform. Developed as part of partnership between Google and simulation education company Labster, the in-depth program boasts 30 interactive lab experiences in which biology students can engage in a series of hands-on scientific activities in a realistic environment.
These actions can include everything from the use of practical tools, such as DNA sequencers and microscopes, to reality-bending experiences only capable in a virtual environment, like traveling to the surface of the newly discovered Astakos IV exoplanet or examining and altering DNA on a molecular level.