You spend weeks studying for an important test. On the big day, you wait nervously as your teacher hands it out. You’re working your way through, when you’re asked to define “ataraxia.” You know you’ve seen the word before, but your mind goes blank. What just happened? Elizabeth Cox details the complex relationship between stress and memory.

 

 

Some of the ways to reduce stress that was mentioned include:

  • Getting regular exercise
  • Getting enough sleep
  • Doing practice tests — especially under similar conditions; under time pressure for example
  • On the day of the test, take deep breaths

 

 

 

Why giving kids a roadmap to their brain can make learning easier — from edsurge.com by Megan Nellis

Excerpts:

Learning, Down to a Science
Metacognition. Neuroplasticity. Retrieval Practice. Amygdala. These aren’t the normal words you’d expect to hear in a 15-year-old rural South African’s vocabulary. Here, though, it’s common talk. And why shouldn’t it be? Over the years, we’ve found youth are innately hungry to learn about the inner workings of their mind—where, why and how learning, thinking and decision-making happens. So, we teach them cognitive science.

Over the next three years, we teach students about the software and hardware of the brain. From Carol Dweck’s online Brainology curriculum, they learn about growth mindset, memory and mnemonics, the neural infrastructure of the brain. They learn how stress impacts learning and about neuroplasticity—or how the brain learns. From David Eagleman and Dan Siegel, they learn about the changing landscape of the adolescent brain and how novelty, emotionality and peer relationships aid in learning.

Pulling from books such as Make It Stick and How We Learn, we pointedly teach students about the science behind retrieval practice, metacognition and other strategies. We expressly use them in our classes so students see and experience the direct impact, and we also dedicate a whole class in our program for students to practice applying these strategies toward their own academic learning from school.

 

 

 
 

From DSC to teachers and professors:
Should these posters be in your classroom? The posters each have a different practice such as:

  • Spaced practice
  • Retrieval practice
  • Elaboration
  • Interleaving
  • Concrete examples
  • Dual coding

That said, I could see how all of that information could/would be overwhelming to some students and/or the more technical terms could bore them or fly over their heads. So perhaps you could boil down the information to feature excerpts from the top sections only that put the concepts into easier to digest words such as:

  • Practice bringing information to mind
  • Switch between ideas while you study
  • Combine words and visuals
  • Etc. 

 

Learn how to study using these practices

 

 

Why demand originality from students in online discussion forums? — from facultyfocus.com by Ronald Jones

Excerpt:

Tell me in your own words
Why demand originality? In relating to a traditional classroom discussion, do students respond to the professor’s question by opening up the textbook or searching for the answer on the Internet and then reading off the answer? Some might try, but by asking questions the professor is looking to see if the students grasp the discussed concept, not if they know how and where to find the answer.

Online students have the advantage of reflection time, along with having the textbook and Internet search engine open when responding to discussion questions. With a few simple clicks, virtually any question can be answered by searching the Internet. Once again, why demand originality? Classroom learning takes place when students are required to think; that’s a few steps beyond clicking copy and paste. As instructors, we should encourage our students to be resourceful and to learn the skills of locating and incorporating scholarly literature into their work. But we also must instill the learning value of synthesizing sources in such a manner that produces evidence of gained knowledge.

 

From DSC:
I like the idea of asking students to put it into their own words. Not just to get by the issue of copying/pasting or trying to stem plagiarism, but because it’s more along the line of journaling about our learning. We need to actually engage with some content in order to put that content into our own words. Not outsourcing our learning to others. Journaling can help us clarify what we’re understanding and where we still have questions and/or concerns.

 

 

Encouraging participation of all in the course: Moving from intact classes to individuals students — from scholarlyteacher.com by Todd Zakrajsek, University of North Carolina, Chapel Hill

Excerpts:

During every class session, read the room by watching individuals. Are students taking notes, nodding along as others speak, or even advancing the discussion by building on the comments of classmates? Are verbal responses merely defining terminology, or do they make connections between the text and real-world examples? Analyze the extent to which certain examples or content areas are received by individual students. Take note when student responses are merely noise to fill the void when you are not talking. Overall, look for individual characteristics that emerge within your course as a community of learning is being established.

Keep in mind that it is often less threatening to one’s ego to claim a lack of preparation for class than it is to admit that one is finding it difficult to understand the material. For those who need a bit of motivation to come prepared, a quiz at the beginning of class will help students to come to class ready to discuss the material for that day.


As all students are pressed for time these days, a quiz might be the added motivation that most students need. These quizzes do not need to be extremely challenging, but they should be challenging enough to ensure the required preparation is done. That is, one should not be able to get responses correct simply by guessing. For students who do not understand the material, quizzes will not prepare them to engage in class discussions or to answer your questions during a discussion lecture. For those students, failed quizzes might add additional pressure and cause less engagement with the material. Struggling students who are not prepared for class need assistance to understand the material. Carefully structured small group projects and discussions might be the best way to get their voices into the class. Ask increasingly difficult questions as part of the discussion, and when you know you have struggling students reserve some of the easier questions for those students.

 

 

Gen Zers look to teachers first, YouTube second for instruction — from campustechnology.com by Dian Schaffhauser

Excerpt:

Students in Generation Z would rather learn from YouTube videos than from nearly any other form of instruction. YouTube was designated as the preferred mode of learning by 59 percent of Gen Zers in a survey on the topic, compared to in-person group activities with classmates (mentioned by 57 percent), learning applications or games (47 percent) and printed books (also 47 percent). A majority (55 percent) believe that YouTube has “contributed to their education.” In fact, nearly half of survey participants (47 percent) reported spending three or more hours every day on YouTube.

The only method of instruction that beat out YouTube? Teachers. Almost four in five Gen Zers (78 percent) reported that their instructors “are very important to learning and development.” That’s nearly 20 percentage points higher than the YouTube option.

While Millennials also value teachers above all else for learning (chosen by 80 percent), that’s followed by printed books (60 percent), YouTube (55 percent), group activities (47 percent) and apps or games (41 percent).

 

 

Also, see the work from Pooja K. Agarwal | @PoojaAgarwal
Assistant Professor, Cognitive Scientist, & Former K-12 Teacher. Follow  and subscribe for teaching strategies at .

An example posting:

Retrieve, Space, Elaborate, and Transfer with Connection Notebooks — from retrievalpractice.org

Excerpts:

How can we encourage students to retrieve, elaborate, and connect with course content? Here’s a strategy called Connection Notebooks by James M. Lang, Professor at Assumption College. Connection Notebooks include retrieval practice, spacing, elaboration, and transfer – all in five minutes or less!

Ask students to dedicate a specific notebook as their Connection Notebook at the beginning of the semester (or provide one for them) and have them to bring it to class every day. Approximately once a week, ask students to take out their Connection Notebook and write a one-paragraph response to a “connection prompt” at the end of class. For example:

  • How does what you learned today connect to something you’ve learned in another class?
  • Have you ever encountered something you learned today in a TV show, movie, song, or book?
  • Have you ever experienced something you learned today in your life outside of school?


Connection Notebooks are effective for a few reasons:

 

 

Also, see the work from Learning Scientists | @AceThatTest | learningscientists.org

An example posting:

 

In this digest, we put together 5 blog posts by teachers that focus on implementing spaced practice in one specific subject at a time. For more of an overview of spaced practice, see this guest post by Jonathan Firth (@JW_Firth).

 

sapced practice in practice
 

 

You’re already harnessing the science of learning (you just don’t know it) — from edsurge.com by Pooja Agarwal

Excerpt (emphasis DSC):

Now, a decade later, I see the same clicker-like trend: tools like Kahoot, Quizlet, Quizizz and Plickers are wildly popular due to the increased student engagement and motivation they can provide. Meanwhile, these tech tools continue to incorporate powerful strategies for learning, which are discussed less often. Consider, for example, four of the most robust research-based strategies from the science of learning:

  1. Retrieval practice
  2. Spaced practice
  3. Interleaving
  4. Feedback

Sound familiar? It’s because approaches that encourage students to use what they know, revisit it over time, mix it up and learn about their own learning are core elements in many current edtech tools. Kahoot and Quizlet, for example, provide numerous retrieval formats, reminders, shuffle options and instant feedback. A century of scientific researchdemonstrates that these features don’t simply increase engagement—they also improve learning, higher order thinking and transfer of knowledge.

 

 


From DSC:
Pastors should ask this type of question as well: “What did we talk about the last time we met?” — then give the congregation a minute to write down what they can remember.


 

 

Also from Pooja Agarwal and RetrievalPractice.org

For teachers, here’s what we share in a minute or less about retrieval practice:

And when it comes to students, the first thing we share are Retrieval Warm Ups. These quick, fun questions engage students in class discussion and start a conversation about how retrieval is something we do every day. Try one of these with a teacher to start a conversation about retrieval practice, too!

 

 

Cake, cake, cake. That’s the theme for today’s update! — from Pooja Agarwal and retrievalpractice.org

In addition to loving cake, this sweet delight illustrates how we can best support learning in the classroom: with retrieval practice, formative assessment, and summative assessment.

Read on for yummy goodness:

  • How these three ingredients are similar and different
  • Why this combination makes for a perfect cake
  • Why learning is not a bake off, cupcake war, or throw down (sorry to disappoint!)

Three key ingredients for learning
Chances are, you’re familiar with this two-part process:

Formative assessment: Checking on and monitoring students’ learning, which provides teachers and students with information about progress. We think of formative assessment as inserting a toothpick to see how the cake is doing while it’s baking.

Summative assessment: Discovering what students know by measuring learning. This is when we get to celebrate accomplishments with cake and also get a sense of what can be improved upon.

But where does retrieval practice fit in?

Retrieval practice: Learning how to crack an egg, measure ingredients, and mix it all together. This is when we embrace mistakes rather than emphasize perfection, because challenges are a good thing for learning.

What does this mean for you?

Key similarity: All three involve bringing information to mind. In other words, they all require retrieval! From the outside, it can look like one seamless process, and that’s a good thing. Learning isn’t linear and neither is retrieval.

Key difference: Retrieval practice doesn’t require data collection. Nothing needs to be recorded in the gradebook. Retrieval is a no-stakes opportunity when students can experiment, be challenged, and improve over time.

Takeaway: For powerful learning, we must be mindful of which ingredients we’re using, which stage we’re in, and how we can incorporate even more retrieval practice throughout the entire learning (and baking) process.

 



Also, be sure to see their guides here:

Go to retrievalpractice.org/library to see some great guides on using retrieval practice



 

From DSC:
I just found out about the work going out at LearningScientists.org.

I was very impressed after my initial review of their materials! What I really appreciate about their work is that they are serious in identifying some highly effective means of how we learn best — pouring over a great deal of research in order to do so. But they don’t leave things there. They help translate that research into things that teachers can then try out in the classroom. This type of practical, concrete help is excellent and needed!

  • Daniel Willingham and some of his colleagues take research and help teachers apply it as well
  • Another person who does this quite well is Pooja Agarwal, an Assistant Professor, Cognitive Scientist, & former K-12 Teacher. Pooja is teaming up with Patrice Bain to write a forthcoming book entitled, Powerful Teaching: Unleash the Science of Learning!  She founded and operates the RetrievalPractice.org site.)

From the LearningScientists.org website (emphasis DSC):

We are cognitive psychological scientists interested in research on education. Our main research focus is on the science of learning. (Hence, “The Learning Scientists”!)

Our Vision is to make scientific research on learning more accessible to students, teachers, and other educators.

Click the button below to learn more about us. You can also check out our social media pages: FacebookTwitterInstagram, & Tumblr.

 

They have a solid blog, podcast, and some valuable downloadable content.

 

 

 

In the downloadable content area, the posters that they’ve created (or ones like them) should be posted at every single facility where learning occurs — K-12 schools, community colleges, colleges, universities, libraries of all kinds, tutoring centers, etc. It may be that such posters — and others like them that encourage the development of metacognitive skills of our students — are out there. I just haven’t run into them.

For example, here’s a poster on learning how to study using spaced practice:

 

 

 

 

Anyway, there’s some great work out there at LearningScientists.org!

 

 


Also relevant here, see:

 

 

 

 

 

“Retrieval practice” is a learning strategy where we focus on getting information out. Through the act of retrieval, or calling information to mind, our memory for that information is strengthened and forgetting is less likely to occur. Retrieval practice is a powerful tool for improving learning without more technology, money, or class time.

On this website (and in our free Retrieval Practice Guide), we discuss how to use retrieval practice to improve learning. Established by nearly 100 years of research, retrieval practice is a simple and powerful technique to transform teaching and learning.

In order to improve learning, we must approach it through a new lens – let’s focus not on getting information “in,” but on getting information “out.”

 

 

What is retrieval practice?
Retrieval practice is a strategy in which bringing information to mind enhances and boosts learning. Deliberately recalling information forces us to pull our knowledge “out” and examine what we know.

For instance, recalling an answer to a science question improves learning to a greater extent than looking up the answer in a textbook. And having to actually recall and write down an answer to a flashcard improves learning more than thinking that you know the answer and flipping the card over prematurely.

Often, we think we’ve learned some piece of information, but we come to realize we struggle when we try to recall the answer. It’s precisely this “struggle” or challenge that improves our memory and learning – by trying to recall information, we exercise or strengthen our memory, and we can also identify gaps in our learning.

Note that cognitive scientists used to refer to retrieval practice as “the testing effect.” Prior research examined the fascinating finding that tests (or short quizzes) dramatically improve learning. More recently, researchers have demonstrated that more than simply tests and quizzes improve learning: flashcards, practice problems, writing prompts, etc. are also powerful tools for improving learning. 

Whether this powerful strategy is called retrieval practice or the testing effect, it is important to keep in mind that the act of pulling information “out” from our minds dramatically improves learning, not the tests themselves. In other words retrieval is the active process we engage in to boost learning; tests and quizzes are merely methods to promote retrieval.

 

 

Also on that site:

 

 

Learn more about this valuable book with our:

 

 

Also on that site:

 

 

Excerpt from the Interleaved Mathematics Practice guide (on page 8 of 13):

Interleaved practice gives students a chance to choose a strategy.
When practice problems are arranged so that consecutive problems cannot be solved by the same strategy, students are forced to choose a strategy on the basis of the problem itself. This gives students a chance to both choose and use a strategy.

Interleaved practice works.
In several randomized control studies, students who received mostly interleaved practice scored higher on a final test than did students who received mostly blocked practice.

 

 

 



From DSC:
Speaking of resources regarding learning…why don’t we have posters in all of our schools, colleges, community colleges, universities, vocational training centers, etc. that talk about the most effective strategies to learn about new things?



 

 

 

Make it Stick: The Science of Successful Learning— by Peter C. Brown, Henry L Roediger III, and Mark A. McDaniel

Some of the key points and learning strategies they mention in the preface:

  • The most effective learning strategies are not intuitive
  • Spaced repetition of key ideas and the interleaving of different but related topics are two excellent teaching/learning strategies

 

 

Some the key points and learning strategies they mention in the first chapter:

  • When they talk about learning they mean acquiring knowledge and skills and having them readily available from memory so you can make sense of future problems and opportunities.
  • There are some immutable aspects of learning that we can probably all agree on:
    1. To be useful, learning requires memory, so what we’ve learned is till there later when we need it.
    2. We need to keep learning and remembering all our lives.
    3. Learning is an acquired skill and most effective strategies are counterintuitive
  • Learning is deeper and more durable when it’s effortful
  • We are poor judges of when we are learning well and when we’re not
  • Rereading text and massed practice (i.e., cramming) of a skill or new knowledge are by far the preferred study strategies of learners of all stripes, but they”re also among the least productive. Rereading and cramming give rise to feeling of fluency that are taken to be signs of mastery, but for true mastery or durability these strategies are largely a waste of time.
  • Retrieval practice — recalling facts or concepts or events from memory — is a more effective learning strategy than reviewing by rereading
    • Flashcards are a simple example
    • Retrieval strengthens the memory and interrupts forgetting
    • A single simple quiz after reading a text or hearing a lecture produces better learning and remembering that rereading the text of reviewing lecture notes.
  • Periodic practice arrest forgetting, strengthens retrieval routes, and is essential for hanging onto the knowledge you want to gain.
  • Space out practice and interleave the practice of 2 or more subjects, retrieval is harder and feels less productive, but the effort produces longer lasting learning and enables more versatile application of it in later settings.
  • Trying to solve a problem before being taught the solution leads to better learning, even when errors are made in the attempt.
  • Learning styles are not supported by the empirical research.
  • When you’re adept at extracting the underlying principles or “rules” that differentiate types of problems, you’re more successful at picking the right solutions in unfamiliar situations. This skill is better acquired through interleaved and varied practice than massed practice.
  • In virtually all areas of learning, you build better mastery when you use testing as a tool to identify and bring up your areas of weakness.
  • All learning requires a foundation of prior knowledge.

 

If you practice elaboration, there’s no known limit to how much you can learn. Elaboration is the process of giving new material meaning by expressing it in your own words and connecting it with what you already know. The more you can explain about the way your new learning relates to your prior knowledge, the stronger your grasp of the new learning will be, and the more connections you create that will help you remember it later.***

 

“When learning is hard, you’re doing important work.”

 

“Making mistakes and correcting them builds the bridges to advanced learning.”

 

Learning is stronger when it matters.^^^

 

  • One of the most striking research findings is the power of active retrieval — testing — to strengthen memory, and the more effortful the retrieval, the stronger the benefit.
    .
  • The act of retrieving learning from memory has 2 profound benefits:
    1. It tells you what you know and don’t know, and therefore where to focus further study
    2. Recalling what you have learned causes your brain to re-consolidate the memory
      .
  • To learn better and remember longer, [use]:
    • various forms of retrieval practice, such as low-stakes quizzing and self-testing
    • spacing out practice
    • interleaving the practice of different but related topics or skills
    • trying to solve a problem before being taught the solution
    • and distilling the underlying principles or rules that differentiate types of problems

 

One of the best habits a learner can instill in herself is regular self-quizzing to recalibrate her understanding of what she does and does not know. 

 

Brown, P. C., Roediger III, H. L., & McDaniel, M. A. (2014).
Make It Stick: The Science of Successful Learning.
Cambridge, MA: The Belknap Press of Harvard University Press.
Retrieved from https://www.amazon.com/Make-Stick-Science-Successful-Learning/dp/0674729013

 

 

*** This quote reminds me of what turned Quin Schultze’ learning around. With Quin’s permission, the following excerpt is from Quentin Schultze’s solid book, Communicate like a True Leader (pages 35 & 36)

 

 

 

During the beginning of my sophomore year, I started reviewing each day’s class notes after classes were over. I soon realized how little I recalled even of that day’s lectures and discussions. It dawned on me that normal note-taking merely gave me the impression that I was learning. I implemented a strategy that revolutionized my learning, launched me successfully into graduate school, helped me become a solid teacher, equipped me to be a productive researcher-writer, and made it possible for me to be an engaging speaker.

I not only reviewed my notes daily. I rewrote them from scratch within a couple of hours of each class meeting. I used my actual course notes as prompts to recall more of the lecture and to help me organize my own reactions to the material. My notes expanded. My retention swelled.

My revised notes became a kind of journal of my dialogue with the instructor and the readings. I integrated into my revised course notes my daily reading notes, reworking them into language that was meaningful to me and preparing to ask the instructor at the next class anything that I was uncertain about. From then on I earned nearly straight A’s with far less cramming for exams.

Moreover, I had begun journaling about my learning — one of the most important communication skills. I became a real learner by discovering how to pay attention to others and myself.

In a broad sense, I learned how to listen.

 

^^^ This quote explains why it is so important to answer the first question a learner asks when approaching a new lesson/topic/lecture/etc.:

  • Why is this topic relevant?
    i.e., why is this topic important and worthy of my time to learn it?

 

 

From DSC:
For those of you who attend services in churches/temples/synagogues, if I asked you to tell me what the 2-3 main key points were — along with the accompanying scripture(s) — from the last sermon that you heard…would you be able to tell me? Would you be able to retrieve those key points from your memory?

With all these reflections going on in my mind about metacognition and Self-Regulated Learning (SRL) these days, I did a mental pivot the other day and I moved the focus off of professors and teachers — and re-focused it towards the church…to pastors. I thought to myself…at the end of each sermon, wouldn’t it really help “solidify the message,” facilitate active reflection, and hopefully have more practical impact if pastors/churches would provide:

  • An extremely pared down list of the the main 2-3 key points; again using very few words (many churches already do this, I’m sure)
  • For a little more detail (but not much more), the pastor could provide the outline of his/her sermon in printed form (some churches do this via a fill-in-the blank pre-printed sheet), or put it up on a slide that’s projected at the end of the service, or put it online even before the sermon was given that day
  • A list of metacognitive check-in type of questions such as:
    • What did you understand in my sermon?
    • What didn’t you understand in my sermon?
    • What do you agree with?
    • What do you disagree with?
    • How can you apply this sermon this week?

By doing this, pastors would help move their main point(s) into more of the long-term memories of the people attending services within their congregations.

 

#SelfRegulatedLearning | #Metacognition

 

 

 

Why Students Forget—and What You Can Do About It — from edutopia.org by Youki Terada
Our brains are wired to forget, but there are research-backed strategies you can use to make your teaching stick.

Excerpt:

5 Teacher Strategies
When students learn a new piece of information, they make new synaptic connections. Two scientifically based ways to help them retain learning is by making as many connections as possible—typically to other concepts, thus widening the “spiderweb” of neural connections—but also by accessing the memory repeatedly over time.

Which explains why the following learning strategies, all tied to research conducted within the past five years, are so effective:

  1. Peer-to-peer explanations: When students explain what they’ve learned to peers, fading memories are reactivated, strengthened, and consolidated. This strategy not only increases retention but also encourages active learning (Sekeres et al., 2016).
  2. The spacing effect: Instead of covering a topic and then moving on, revisit key ideas throughout the school year. Research shows that students perform better academically when given multiple opportunities to review learned material. For example, teachers can quickly incorporate a brief review of what was covered several weeks earlier into ongoing lessons, or use homework to re-expose students to previous concepts (Carpenter et al., 2012; Kang, 2016).
  3. Frequent practice tests: Akin to regularly reviewing material, giving frequent practice tests can boost long-term retention and, as a bonus, help protect against stress, which often impairs memory performance. Practice tests can be low stakes and ungraded, such as a quick pop quiz at the start of a lesson or a trivia quiz on Kahoot, a popular online game-based learning platform. Breaking down one large high-stakes test into smaller tests over several months is an effective approach (Adesope, Trevisan, & Sundararajan, 2017; Butler, 2010; Karpicke, 2016).
  4. Interleave concepts: Instead of grouping similar problems together, mix them up. Solving problems involves identifying the correct strategy to use and then executing the strategy. When similar problems are grouped together, students don’t have to think about what strategies to use—they automatically apply the same solution over and over. Interleaving forces students to think on their feet, and encodes learning more deeply (Rohrer, 2012; Rohrer, Dedrick, & Stershic, 2015).
  5. Combine text with images: It’s often easier to remember information that’s been presented in different ways, especially if visual aids can help organize information. For example, pairing a list of countries occupied by German forces during World War II with a map of German military expansion can reinforce that lesson. It’s easier to remember what’s been read and seen, instead of either one alone (Carney & Levin, 2002; Bui & McDaniel, 2015).

So even though forgetting starts as soon as learning happens—as Ebbinghaus’s experiments demonstrate—research shows that there are simple and effective strategies to help make learning stick.

 

 

 

Aiding Reading Comprehension With Post-Its — from edutopia.org by Judy Willis

Excerpt:

Sample Post-it Prompts
In these prompts, the students address the text directly—by calling it “you”—as though they were having a conversation with it.

To be completed before reading for prediction and preview:

  • I think you’ll be telling me…
  • I already know things about you, so I predict…

To be completed after briefly skimming the assigned pages:

  • What does the heading for this section suggest about what will come?
  • What does this picture (graph, diagram, etc.) suggest about this reading topic?

To be completed during reading as a response to what is read:

  • You’re similar to what I’ve learned before, because you remind me of…
  • I would have preferred a picture of… (Students can also sketch, describe, or download a picture, graph, or diagram)
  • This is not what I expected, which was…
  • This gives me an idea for…
  • I want to know more about…
  • This information could be useful to me because I’m interested in…
  • I think this will be on the test because…

The use of Post-its increases memory pattern linkages, understanding, and the pleasure of reading. As students become more skilled readers through strategies that promote pattern seeking and linking, they build their independent skills about how to think actively about the text—their metacognitive skills.

 

 

 

From DSC:
I have been trying to blog more about learning how to learn — and to provide some more resources on metacognition and the like.

Along these lines — and with permission from the author — the following excerpt is from Quentin Schultze’s solid book, Communicate like a True Leader (pages 35 & 36).  I asked Quin if I could share this excerpt because I think it could be a great strategy to share with students (at least for them to experiment with, and try it out to see if it helps them). Whether they know it or not, learning how to learn is THEE key skill these days.

Quin would also emphasize some other items such as listening, attending to reality, communicating effectively with others, and more…but my focus here is on learning strategies.  So I share it in the hope that it will help some of you students out there just as it helped Quin.

 

 

During the beginning of my sophomore year, I started reviewing each day’s class notes after classes were over. I soon realized how little I recalled even of that day’s lectures and discussions. It dawned on me that normal note-taking merely gave me the impression that I was learning. I implemented a strategy that revolutionized my learning, launched me successfully into graduate school, helped me become a solid teacher, equipped me to be a productive researcher-writer, and made it possible for me to be an engaging speaker.

I not only reviewed my notes daily. I rewrote them from scratch within a couple of hours of each class meeting. I used my actual course notes as prompts to recall more of the lecture and to help me organize my own reactions to the material. My notes expanded. My retention swelled.

My revised notes became a kind of journal of my dialogue with the instructor and the readings. I integrated into my revised course notes my daily reading notes, reworking them into language that was meaningful to me and preparing to ask the instructor at the next class anything that I was uncertain about. From then on I earned nearly straight A’s with far less cramming for exams.

Moreover, I had begun journaling about my learning — one of the most important communication skills. I became a real learner by discovering how to pay attention to others and myself.

In a broad sense, I learned how to listen.

 

 

 

A Curiosity Guide — from byrdseed.com Ian Byrd


Excerpts:

Anticipation and Dopamine: In part one of this curiosity series, we explore the connection between curiosity, anticipation, and dopamine and discover why we remember things better when we are allowed to wonder.

So, to wrap up our first round of exploring curiosity:

  • When we become curious, we are anticipating learning information.
  • Our brain releases dopamine, a pleasurable chemical related to the anticipation of a reward (in this case information).
  • Simply being in this curious state activates the hippocampus, enhancing memory.
  • We remember things better when we are in this state, even things we weren’t actually curious about.

Closing Question:
How many times a day are your students in a curious state, eagerly anticipating information?

 

Confusion and Curiosity: So how do we make kids curious? We’ll cover two aspects: creating information gaps and (yes) purposefully confusing our students.

In the first article, we covered what happenings in our brains when we become curious. We also noted that just being in a state of curiosity can improve memory, even for things you’re not curious about.

Here’s one key: to become curious, you must already know something about the topic. Curiosity only fires up when we discover that some important information is missing or that it contradicts information we already had. George Loewenstein calls this the Information Gap theory of curiosity.

Simply put: we have to give students enough information for them to become curious about the missing information.

To wrap up part two:

  • Curiosity requires us to know something about the topic.
  • We become curious when information doesn’t fit an existing mental model.
  • Confusion is part of curiosity. We enjoy a certain amount of cognitive disequilibrium.
  • But! No one wants to be curious forever. It must be resolved.

 

Curiosity Is Social: When we’re curious, we can enhance that curiosity by discussing it with others. Our mutual confusion takes us deeper into the experience.

So, in classrooms, it’s worth purposefully (but gently) confusing students and then letting them talk to each other. It will build their interest and enhance their curiosity.

 

Creating Cultures of Curiosity: The biggest factor in our students’ curiosity at school is us! Teachers can create (or kill) cultures of curiosity. We’ll look at four qualities and a couple experiments run by Susan Engel.

Teachers have enormous power to encourage or discourage curiosity. Every word and action can either build a culture of curiosity or a culture of compliance.

 

 

 
© 2024 | Daniel Christian