6 key trends to 21st century teaching — from edsurge.com

Excerpt:

It’s popular these days to complain that college teaching hasn’t changed in hundreds of years. And sure, it’s possible to find some professors on any campus holding yellowed lecture notes, or clinging to dusty chalk. But the reality is that the internet and digital technologies have already brought profound changes to instructional styles and tools in higher education.

So what are the new teaching approaches catching on at today’s campuses? And what are the broader cultural changes around college teaching?

We set out to answer those questions over the past year, with a series of articles and interviews exploring what teaching in the 21st century looks like. Some show the nuances of the challenges of teaching with technology by telling stories of innovative professors, including how a water agency official who teaches an online community college course got started in creating open educational resources when her class was incorporated into a zero-cost textbook degree program. Others dive into research on the culture of teaching, like a talk with an anthropologist studying how professors react to (and sometimes resist) research on teaching practices.

 

 

 

The Lesson You Never Got Taught in School: How to Learn! — from bigthink.com by Simon Oxenham (from 2/15/13)
Psychological Science in the Public Interest evaluated ten techniques for improving learning, ranging from mnemonics to highlighting and came to some surprising conclusions.

 

Excerpts:

Practice Testing (Rating = High)
This is where things get interesting; testing is often seen as a necessary evil of education. Traditionally, testing consists of rare but massively important ‘high stakes’ assessments. There is however, an extensive literature demonstrating the benefits of testing for learning – but importantly, it does not seem necessary that testing is in the format of ‘high stakes’ assessments. All testing including ‘low stakes’ practice testing seems to result in benefits. Unlike many of the other techniques mentioned, the benefits of practice testing are not modest – studies have found that a practice test can double free recall!

Distributed Practice (Rating = High)
Have you ever wondered whether it is best to do your studying in large chunks or divide your studying over a period of time? Research has found that the optimal level of distribution of sessions for learning is 10-20% of the length of time that something needs to be remembered. So if you want to remember something for a year you should study at least every month, if you want to remember something for five years you should space your learning every six to twelve months. If you want to remember something for a week you should space your learning 12-24 hours apart. It does seem however that the distributed-practice effect may work best when processing information deeply – so for best results you might want to try a distributed practice and self-testing combo.

 

Also see:

 

 

 

 

Per Willingham (emphasis DSC):

  • Rereading is a terribly ineffective strategy. The best strategy–by far — is to self-test — which is the 9th most popular strategy out of 11 in this study.  Self-testing leads to better memory even compared to concept mapping (Karpicke & Blunt, 2011).

 

Three Takeaways from Becoming An Effective Learner:

  • Boser says that the idea that people have different learning styles, such as visual learning or verbal learning, has little scientific evidence to support it.
  • According to Boser, teachers and parents should praise their kids’ ability and effort, instead of telling them they’re smart. “When we tell people they are smart, we give them… a ‘fixed mindset,’” says Boser.
  • If you are learning piano – or anything, really – the best way to learn is to practice different composers’ work. “Mixing up your practices is far more effective,” says Boser.

 

Cumulative exams aren’t the same as spacing and interleaving. Here’s why. — from  retrievalpractice.org

Excerpts (emphasis DSC):

Our recommendations to make cumulative exams more powerful with small tweaks for you and your students:

  • Cumulative exams are good, but encourage even more spacing and discourage cramming with cumulative mini-quizzes throughout the semester, not just as an end-of-semester exam.
  • Be sure that cumulative mini-quizzes, activities, and exams include similar concepts that require careful discrimination from students, not simply related topics.
  • Make sure you are using spacing and interleaving as learning strategies and instructional strategies throughout the semester, not simply as part of assessments and cumulative exams.

Bottom line: Just because an exam is cumulative does not mean it automatically involves spacing or interleaving. Be mindful of relationships across exam content, as well as whether students are spacing their study throughout the semester or simply cramming before an exam – cumulative or otherwise.

 


From DSC:
We, like The Learning Scientists encourages us to do and even provides their own posters, should have posters with these tips on them throughout every single school and library in the country. The posters each have a different practice such as:

  • Spaced practice
  • Retrieval practice
  • Elaboration
  • Interleaving
  • Concrete examples
  • Dual coding

That said, I could see how all of that information could/would be overwhelming to some students and/or the more technical terms could bore them or fly over their heads. So perhaps we could boil down the information to feature excerpts from the top sections only that put the concepts into easier to digest words such as:

  • Practice bringing information to mind
  • Switch between ideas while you study
  • Combine words and visuals
  • Etc. 

 

Learn how to study using these practices

 

 

‘Is it ever OK to lecture?’ — from chronicle.com by David Gooblar

Excerpts:

All of which leaves many newcomers to teaching — and some classroom veterans — wondering: Can’t instructors just lecture sometimes? Can’t we ever just tell students what we know?

Of course we can, but it’s important to know what telling is good for — and what it’s not. If we can better understand the problem with relying too much on lecturing — or “continuous exposition by the teacher,” as Derek Bruff, director of Vanderbilt University’s teaching center, called it — then we can better situate lectures within a mix of teaching practices.

When to “tell,” and when not to.

Telling is an excellent method of communicating specific information, and there are plenty of occasions when our students need specific information. To communicate important facts, to illustrate a concept with a story of its application, to explain the historical origins of a conflict, you can take the easiest route from A to B and just tell (i.e., lecture) your students.

What telling is not good for: teaching students complex ideas, conceptual knowledge, or difficult skills.

It’s also true that the best students — ones who have developed good note-taking skills — can learn quite a lot from a lecture. But to reach more than just the best students, we need to do more than just tell the class information and expect everyone to understand and put it to use.

 

A short lecture on those very topics will be that much more effective after students first try to solve the puzzle on their own. Naïve tasks work well because they reveal to students the gaps in their knowledge — gaps that your lecture can fill. 

 

Or take a page from the naïve-tasks concept and have students attempt the quiz before the lecture, thus revealing to them all that they don’t know. Then give students a chance to change their answers as they learn from your lecture.

 

Cut the curriculum — from willrichardson.com by Will Richardson

Excerpt:

Here’s an idea: A Minimal Viable Curriculum (MVC). That’s what Christian Talbot over at Basecamp is proposing, and I have to say, I love the idea.

He writes: “What if we were to design MVCs: Minimum Viable Curricula centered on just enough content to empower learners to examine questions or pursue challenges with rigor? Then, as learners go deeper into a question or challenge, they update their MVC…which is pretty much how learning happens in the real world.”

The key there to me is that THEY update their MVC. That resonates so deeply; it feels like that’s what I’m doing with my learning each day as I read about and work with school leaders who are thinking deeply about change.

 

When we pursue questions that matter to us, rigor is baked in.

 

From DSC:
I love the idea of giving students — as they can handle it — more choice, more control. So anytime around 8th-12th grade, I say we turn much more control over to the students, and let them make more choices on what they want to learn about. We should at least try some experiments along these lines.

 

 

As everyone in the workforce is now required to be a lifelong learner, our quality of life goes much higher if we actually enjoy learning. As I think about it, I have often heard an adult (especially middle age and older) say something like, “I hated school, but now, I love to learn.”

Plus, I can easily imagine greater engagement with the materials that students choose for themselves, as well as increased attention spans and higher motivation levels.

Also, here’s a major shout out to Will Richardson, Bruce Dixon, Missy Emler and Lyn Hilt for the work they are doing at ModernLearners.com.

 

Check out the work over at Modern Learners dot com

 

 

How to teach a good first day of class — from chronicle.com by James Lang
Four Key Principles | Before the First Day | The First Day of Class | After the First Day | Resources

Excerpt (emphasis DSC):

Do not begin the first day of the semester by immediately handing out the syllabus. Instead, spark their curiosity about the content first, and then demonstrate — with a review of the syllabus — how the course content can help satisfy that curiosity.

 

From DSC:
I think what’s also implied here is putting one’s case forward about how the content is ***relevant*** today.

 

Also this is a good practice to do as well, but for the end of the term/semester/quarter/whatever:

 

 

Top Education Trend of 2018: Active Learning Spaces — from gettingsmart.com by Tom Vander Ark

Excerpts:

The top learning trend in K-12 learning in 2018 was active learning spaces–from double classrooms in old buildings from California’s Central Valley to the west tip of Texas in El Paso and multiage pods in new spaces from Redwood City to Charlottesville.

The flexible spaces facilitate project-based learning and competency-based progressions. Students move from project teams to skill groups to activity centers building skills and developing agency and self-management.

Competency: The Trend to Watch in 2019
A year from now people will be talking about competency frameworks–how learners progress as they demonstrate mastery.

The shift from marking time to measuring learning will be generational in length, but our landscape analysis suggests several interesting signs of progress that will be evident in 2019:

  • In the most interesting merger of the year, LRNG, the leading youth badging platform, joined forces with SNHU, the leading online university. Look for badges capturing in and out of school learning that stack into college credit.
  • More schools, like Purdue Polytech, will embrace project-based learning and competency-based progressions with support from XQ, NGLC funds, and NewSchools Venture Fund.
  • More platform partnerships where districts/networks are working in development cycles with platform providers (e.g. Brooklyn LAB and Cortex, Purdue Polytech and Course Networking, Lindsay USD and Empower).
  • More artificial intelligence is showing up in learning platforms improving personalization, formative feedback, and student scheduling.
  • More demand for interoperability will be evident as a result of efforts like Project Unicorn.

It’s going to be a good new year. Find a couch or pull up a bar stool–your choice. Work on a badge or microcredential, it’s likely to be more widely recognized next year.

 

Also see:

Brickstuff is the perfect way to light up Lego builds. This starter kit includes everything you need to get started. No electronics or soldering knowledge is necessary to set up these lights and start using them right away. Each flexible 2-LED Light Strip has a self-adhesive backing, which allows easy mounting to almost any surface. The strips are flexible, allowing you to mount them even on curved surfaces. This kit also includes a battery pack, so you can be up and running right away. This kit is ready to use with any microcontroller or robotics project too.

 

 

From DSC:
When a professor walks into the room, the mobile device that the professor is carrying notifies the system to automatically establish his or her preferred settings for the room — and/or voice recognition allows a voice-based interface to adjust the room’s settings:

  • The lights dim to 50%
  • The projector comes on
  • The screen comes down
  • The audio is turned up to his/her liking
  • The LMS is logged into with his/her login info and launches the class that he/she is teaching at that time of day
  • The temperature is checked and adjusted if too high or low
  • Etc.
 

EdTechs and Instructional Designers—What’s the Difference? — from er.educause.edu by Pat Reid

Excerpt:

Both edtechs and instructional designers (IDs) work with computer systems and programs, yet their actual duties differ from traditional IT tasks. The resulting confusion over what edtechs and IDs do—and how the two roles differ—is rampant, not least in the sector that needs them most: higher education.

 

Can space activate learning? UC Irvine seeks to find out with $67M teaching facility  — from edsurge.com by Sydney Johnson

Excerpt:

When class isn’t in session, UC Irvine’s shiny new Anteater Learning Pavillion looks like any modern campus building. There are large lecture halls, hard-wired lecture capture technology, smaller classrooms, casual study spaces and brightly colored swivel chairs.

But there’s more going on in this three-level, $67-million facility, which opened its doors in September. For starters, the space is dedicated to “active learning,” a term that often refers to teaching styles that go beyond a one-way lecture format. That could range from simply giving students a chance to pause and discuss with peers, to role playing, to polling students during class, and more.

To find out what that really looks like—and more importantly, if it works—the campus is also conducting a major study over the next year to assess active learning in the new building.

 

 

 

 

From DSC:
I agree with futurist Thomas Frey:

“I’ve been predicting that by 2030 the largest company on the internet is going to be an education-based company that we haven’t heard of yet.”

(source)

 

Along these lines, see what Arizona State University is up to:

We think of this as a transformation away from a mass-production model to a mass-personalization model. For us, that’s the big win in this whole process. When we move away from the large lectures in that mass-production model that we’ve used for the last 170 years and get into something that reflects each of the individual learners’ needs and can personalize their learning path through the instructional resources, we will have successfully moved the education industry to the new frontier in the learning process. We think that mass personalization has already permeated every aspect of our lives, from navigation to entertainment; and education is really the next big frontier.

(source)

 

From DSC:
Each year the vision I outlined here gets closer and closer and closer and closer. With the advancements in Artificial Intelligence (AI), change is on the horizon…big time. Mass personalization. More choice. More control.

 

 

From DSC:
The picture below was posted in the item below from edutopia. What a powerful picture! And not just for art or drama teachers!

Does it not once again illustrate that we are different? The lenses that we view the world through are different. Our learners are different. Each of us comes to a learning experience with different backgrounds, emotions, knowledge…and different real-life experiences.

As the article mentions, we need to create safe and supportive learning environments, where the love of (or at least the enjoyment of) learning can thrive.

 

Getting creative with social and emotional learning (SEL) — from by Maurice Elias, Sara LaHayne
How to incorporate creative expression and movement in the classroom while building social and emotional learning skills.

Excerpt:

Being creative is an inherently vulnerable process. In order to authentically build SEL competencies through creative expression, teachers need to strive to create a safe space, provide time, and open doors for validation.

  • Creating a safe and supportive classroom environment
  • Providing time
  • Opening the doors for validation

 

 

From DSC:
I have often reflected on differentiation or what some call personalized learning and/or customized learning. How does a busy teacher, instructor, professor, or trainer achieve this, realistically?

It’s very difficult and time-consuming to do for sure. But it also requires a team of specialists to achieve such a holy grail of learning — as one person can’t know it all. That is, one educator doesn’t have the necessary time, skills, or knowledge to address so many different learning needs and levels!

  • Think of different cognitive capabilities — from students that have special learning needs and challenges to gifted students
  • Or learners that have different physical capabilities or restrictions
  • Or learners that have different backgrounds and/or levels of prior knowledge
  • Etc., etc., etc.

Educators  and trainers have so many things on their plates that it’s very difficult to come up with _X_ lesson plans/agendas/personalized approaches, etc.  On the other side of the table, how do students from a vast array of backgrounds and cognitive skill levels get the main points of a chapter or piece of text? How can they self-select the level of difficulty and/or start at a “basics” level and work one’s way up to harder/more detailed levels if they can cognitively handle that level of detail/complexity? Conversely, how do I as a learner get the boiled down version of a piece of text?

Well… just as with the flipped classroom approach, I’d like to suggest that we flip things a bit and enlist teams of specialists at the publishers to fulfill this need. Move things to the content creation end — not so much at the delivery end of things. Publishers’ teams could play a significant, hugely helpful role in providing customized learning to learners.

Some of the ways that this could happen:

Use an HTML like language when writing a textbook, such as:

<MainPoint> The text for the main point here. </MainPoint>

<SubPoint1>The text for the subpoint 1 here.</SubPoint1>

<DetailsSubPoint1>More detailed information for subpoint 1 here.</DetailsSubPoint1>

<SubPoint2>The text for the subpoint 2 here.</SubPoint2>

<DetailsSubPoint2>More detailed information for subpoint 2 here.</DetailsSubPoint2>

<SubPoint3>The text for the subpoint 3 here.</SubPoint3>

<DetailsSubPoint3>More detailed information for subpoint 3 here.</DetailsSubPoint1>

<SummaryOfMainPoints>A list of the main points that a learner should walk away with.</SummaryOfMainPoints>

<BasicsOfMainPoints>Here is a listing of the main points, but put in alternative words and more basic ways of expressing those main points. </BasicsOfMainPoints>

<Conclusion> The text for the concluding comments here.</Conclusion>

 

<BasicsOfMainPoints> could be called <AlternativeExplanations>
Bottom line: This tag would be to put things forth using very straightforward terms.

Another tag would be to address how this topic/chapter is relevant:
<RealWorldApplication>This short paragraph should illustrate real world examples

of this particular topic. Why does this topic matter? How is it relevant?</RealWorldApplication>

 

On the students’ end, they could use an app that works with such tags to allow a learner to quickly see/review the different layers. That is:

  • Show me just the main points
  • Then add on the sub points
  • Then fill in the details
    OR
  • Just give me the basics via an alternative ways of expressing these things. I won’t remember all the details. Put things using easy-to-understand wording/ideas.

 

It’s like the layers of a Microsoft HoloLens app of the human anatomy:

 

Or it’s like different layers of a chapter of a “textbook” — so a learner could quickly collapse/expand the text as needed:

 

This approach could be helpful at all kinds of learning levels. For example, it could be very helpful for law school students to obtain outlines for cases or for chapters of information. Similarly, it could be helpful for dental or medical school students to get the main points as well as detailed information.

Also, as Artificial Intelligence (AI) grows, the system could check a learner’s cloud-based learner profile to see their reading level or prior knowledge, any IEP’s on file, their learning preferences (audio, video, animations, etc.), etc. to further provide a personalized/customized learning experience. 

To recap:

  • “Textbooks” continue to be created by teams of specialists, but add specialists with knowledge of students with special needs as well as for gifted students. For example, a team could have experts within the field of Special Education to help create one of the overlays/or filters/lenses — i.e., to reword things. If the text was talking about how to hit a backhand or a forehand, the alternative text layer could be summed up to say that tennis is a sport…and that a sport is something people play. On the other end of the spectrum, the text could dive deeply into the various grips a person could use to hit a forehand or backhand.
  • This puts the power of offering differentiation at the point of content creation/development (differentiation could also be provided for at the delivery end, but again, time and expertise are likely not going to be there)
  • Publishers create “overlays” or various layers that can be turned on or off by the learners
  • Can see whole chapters or can see main ideas, topic sentences, and/or details. Like HTML tags for web pages.
  • Can instantly collapse chapters to main ideas/outlines.

 

 

A Space for Learning: A review of research on active learning spaces — from by Robert Talbert and Anat Mor-Avi

Abstract:
Active Learning Classrooms (ALCs) are learning spaces specially designed to optimize the practice of active learning and amplify its positive effects in learners from young children through university-level learners. As interest in and adoption of ALCs has increased rapidly over the last decade, the need for grounded research in their effects on learners and schools has grown proportionately. In this paper, we review the peer-reviewed published research on ALCs, dating back to the introduction of “studio” classrooms and the SCALE-UP program up to the present day. We investigate the literature and summarize findings on the effects of ALCs on learning outcomes, student engagement, and the behaviors and practices of instructors as well as the specific elements of ALC design that seem to contribute the most to these effects. We also look at the emerging cultural impact of ALCs on institutions of learning, and we examine the drawbacks of the published research as well as avenues for potential future research in this area.

 

1: Introduction
1.1: What is active learning, and what is an active learning classroom?
Active learning is defined broadly to include any pedagogical method that involves students actively working on learning tasks and reflecting on their work, apart from watching, listening, and taking notes (Bonwell & Eison, 1991). Active learning has taken hold as a normative instructional practice in K12 and higher education institutions worldwide. Recent studies, such as the 2014 meta-analysis linking active learning pedagogies with dramatically reduced failure rates in university-level STEM courses (Freeman et al., 2014) have established that active learning drives increased student learning and engagement across disciplines, grade levels, and demographics.

As schools, colleges, and universities increasingly seek to implement active learning, concerns about the learning spaces used for active learning have naturally arisen. Attempts to implement active learning pedagogies in spaces that are not attuned to the particular needs of active learning — for example, large lecture halls with fixed seating — have resulted in suboptimal results and often frustration among instructors and students alike. In an effort to link architectural design to best practices in active learning pedagogy, numerous instructors, school leaders, and architects have explored how learning spaces can be differently designed to support active learning and amplify its positive effects on student learning. The result is a category of learning spaces known as Active Learning Classrooms (ALCs).

While there is no universally accepted definition of an ALC, the spaces often described by this term have several common characteristics:

  • ALCs are classrooms, that is, formal spaces in which learners convene for educational activities. We do not include less-formal learning spaces such as faculty offices, library study spaces, or “in-between” spaces located in hallways or foyers.
  • ALCs include deliberate architectural and design attributes that are specifically intended to promote active learning. These typically include moveable furniture that can be reconfigured into a variety of different setups with ease, seating that places students in small groups, plentiful horizontal and/or vertical writing surfaces such as whiteboards, and easy access to learning
    technologies (including technological infrastructure such as power outlets).
  • In particular, most ALCs have a “polycentric” or “acentric” design in which there is no clearly-defined front of the room by default. Rather, the instructor has a station which is either
    movable or located in an inconspicuous location so as not to attract attention; or perhaps there is no specific location for the instructor.
  • Finally, ALCs typically provide easy access to digital and analog tools for learning , such as multiple digital projectors, tablet or laptop computers, wall-mounted and personal whiteboards, or classroom response systems.

2.1: Research questions
The main question that this study intends to investigate is: What are the effects of the use of ALCs on student learning, faculty teaching, and institutional cultures? Within this broad overall question, we will focus on four research questions:

  1. What effects do ALCs have on measurable metrics of student academic achievement? Included in such metrics are measures such as exam scores, course grades, and learning gains on pre/post-test measures, along with data on the acquisition of “21st Century Skills”, which we will define using a framework (OCDE, 2009) which groups “21st Century Skills” into skills pertaining to information, communication, and ethical/social impact.
  2. What effects do ALCs have on student engagement? Specifically, we examine results pertaining to affective, behavioral, and cognitive elements of the idea of “engagement” as well as results that cut across these categories.
  3. What effect do ALCs have on the pedagogical practices and behaviors of instructors? In addition to their effects on students, we are also interested the effects of ALCs on the instructors who use them. Specifically, we are interested in how ALCs affect instructor attitudes toward and implementations of active learning, how ALCs influence faculty adoption of active learning pedagogies, and how the use of ALCs affects instructors’ general and environmental behavior.
  4. What specific design elements of ALCs contribute significantly to the above effects? Finally, we seek to identify the critical elements of ALCs that contribute the most to their effects on student learning and instructor performance, including affordances and elements of design, architecture, and technology integration.

 

Active Learning Classrooms (ALCs)

 

 

The common denominator in the larger cultural effects of ALCs and active learning on students and instructors is the notion of connectedness, a concept we have already introduced in discussions of specific ALC design elements. By being freer to move and have physical and visual contact with each other in a class meeting, students feel more connected to each other and more connected to their instructor. By having an architectural design that facilitates not only movement but choice and agency — for example, through the use of polycentric layouts and reconfigurable furniture — the line between instructor and students is erased, turning the ALC into a vessel in which an authentic community of learners can take form.

 

 

 

 

Affordable and at-scale — from insidehighered.com by Ray Schroeder
Affordable degrees at scale have arrived. The momentum behind this movement is undeniable, and its impact will be significant, Ray Schroeder writes.

Excerpt (emphasis DSC):

How many times have we been told that major change in our field is on the near horizon? Too many times, indeed.

The promises of technologies and practices have fallen short more often than not. Just seven years ago, I was part of the early MOOC movement and felt the pulsating potential of teaching thousands of students around the world in a single class. The “year of the MOOC” was declared in 2012. Three years later, skeptics declared that the MOOC had died an ignominious death with high “failure” rates and relatively little recognition by employers.

However, the skeptics were too impatient, misunderstood the nature of MOOCs and lacked the vision of those at Georgia Tech, the University of Illinois, Arizona State University, Coursera, edX and scores of other institutions that have persevered in building upon MOOCs’ premises to develop high-quality, affordable courses, certificates and now, degrees at scale.

No, these degrees are not free, but they are less than half the cost of on-campus versions. No, they are not massive in the hundreds of thousands, but they are certainly at large scale with many thousands enrolled. In computer science, the success is felt across the country.

 

Georgia Tech alone has enrolled 10,000 students over all in its online master’s program and is adding thousands of new students each semester in a top 10-ranked degree program costing less than $7,000. Georgia Tech broke the new ground through building collaborations among several partners. Yet, that was just the beginning, and many leading universities have followed.

 

 

Also see:

Trends for the future of education with Jeff Selingo — from steelcase.com
How the future of work and new technology will make place more important than ever.

Excerpt:

Selingo sees artificial intelligence and big data as game changers for higher education. He says AI can free up professors and advisors to spend more time with students by answering some more frequently-asked questions and handling some of the grading. He also says data can help us track and predict student performance to help them create better outcomes. “When they come in as a first-year student, we can say ‘People who came in like you that had similar high school grades and took similar classes ended up here. So, if you want to get out of here in four years and have a successful career, here are the different pathways you should follow.’”

 

 

 

Reflections on “Are ‘smart’ classrooms the future?” [Johnston]

Are ‘smart’ classrooms the future? — from campustechnology.com by Julie Johnston
Indiana University explores that question by bringing together tech partners and university leaders to share ideas on how to design classrooms that make better use of faculty and student time.

Excerpt:

To achieve these goals, we are investigating smart solutions that will:

  • Untether instructors from the room’s podium, allowing them control from anywhere in the room;
  • Streamline the start of class, including biometric login to the room’s technology, behind-the-scenes routing of course content to room displays, control of lights and automatic attendance taking;
  • Offer whiteboards that can be captured, routed to different displays in the room and saved for future viewing and editing;
  • Provide small-group collaboration displays and the ability to easily route content to and from these displays; and
  • Deliver these features through a simple, user-friendly and reliable room/technology interface.

Activities included collaborative brainstorming focusing on these questions:

  • What else can we do to create the classroom of the future?
  • What current technology exists to solve these problems?
  • What could be developed that doesn’t yet exist?
  • What’s next?

 

 

 

From DSC:
Though many peoples’ — including faculty members’ — eyes gloss over when we start talking about learning spaces and smart classrooms, it’s still an important topic. Personally, I’d rather be learning in an engaging, exciting learning environment that’s outfitted with a variety of tools (physically as well as digitally and virtually-based) that make sense for that community of learners. Also, faculty members have very limited time to get across campus and into the classroom and get things setup…the more things that can be automated in those setup situations the better!

I’ve long posted items re: machine-to-machine communications, voice recognition/voice-enabled interfaces, artificial intelligence, bots, algorithms, a variety of vendors and their products including Amazon’s Alexa / Apple’s Siri / Microsoft’s Cortana / and Google’s Home or Google Assistant, learning spaces, and smart classrooms, as I do think those things are components of our future learning ecosystems.

 

 

 

Looking for something?

Use the form below to search the site:

Still not finding what you're looking for? Drop a comment on a post or contact us so we can take care of it!

© 2019 | Daniel Christian