One finding from our student survey that stood out to us: Many college and university students are teaching themselves and their friends about AI without waiting for their institutions to provide formal AI education or clear policies about the technology’s use. The education ecosystem is in an important moment of exploration and learning, but the rapid adoption by students across the country who haven’t received formalized instruction in how and when to use the technology creates disparities in AI access and knowledge.
The enclosed snapshot of how young people are using ChatGPT provides insight into the state of AI use among America’s college-aged students. We also include actionable proposals to help address adoption gaps. We hope these insights and proposals can inform research and policy conversation across the nation’s education ecosystem about how to achieve outcomes that support our students, our workforce, and the economy. By improving literacy, expanding access, and implementing clear policies, policymakers and educators can better integrate AI into our educational infrastructure and ensure that our workforce is ready to both sustain and benefit from our future with AI.
Per The Rundown: OpenAI just launched a surprising new way to access ChatGPT — through an old-school 1-800 number & also rolled out a new WhatsApp integration for global users during Day 10 of the company’s livestream event.
Agentic AI represents a significant evolution in artificial intelligence, offering enhanced autonomy and decision-making capabilities beyond traditional AI systems. Unlike conventional AI, which requires human instructions, agentic AI can independently perform complex tasks, adapt to changing environments, and pursue goals with minimal human intervention.
This makes it a powerful tool across various industries, especially in the customer service function. To understand it better, let’s compare AI Agents with non-AI agents.
… Characteristics of Agentic AI
Autonomy: Achieves complex objectives without requiring human collaboration.
Language Comprehension: Understands nuanced human speech and text effectively.
Rationality: Makes informed, contextual decisions using advanced reasoning engines.
Adaptation: Adjusts plans and goals in dynamic situations.
Workflow Optimization: Streamlines and organizes business workflows with minimal oversight.
How, then, can we research and observe how our systems are used while rigorously maintaining user privacy?
Claude insights and observations, or “Clio,” is our attempt to answer this question. Clio is an automated analysis tool that enables privacy-preserving analysis of real-world language model use. It gives us insights into the day-to-day uses of claude.ai in a way that’s analogous to tools like Google Trends. It’s also already helping us improve our safety measures. In this post—which accompanies a full research paper—we describe Clio and some of its initial results.
Evolving tools redefine AI video — from heatherbcooper.substack.com by Heather Cooper Google’s Veo 2, Kling 1.6, Pika 2.0 & more
AI video continues to surpass expectations
The AI video generation space has evolved dramatically in recent weeks, with several major players introducing groundbreaking tools.
Here’s a comprehensive look at the current landscape:
Veo 2…
Pika 2.0…
Runway’s Gen-3…
Luma AI Dream Machine…
Hailuo’s MiniMax…
OpenAI’s Sora…
Hunyuan Video by Tencent…
There are several other video models and platforms, including …
Best of 2024 — from wondertools.substack.com by Jeremy Caplan 12 of my favorites this year
I tested hundreds of new tools this year. Many were duplicative. A few stuck with me because they’re so useful. The dozen noted below are helping me mine insights from notes, summarize meetings, design visuals— even code a little, without being a developer. You can start using any of these in minutes — no big budget or prompt engineering PhD required.
Picture your enterprise as a living ecosystem,where surging market demand instantly informs staffing decisions, where a new vendor’s onboarding optimizes your emissions metrics, where rising customer engagement reveals product opportunities. Now imagine if your systems could see these connections too! This is the promise of AI agents — an intelligent network that thinks, learns, and works across your entire enterprise.
Today, organizations operate in artificial silos. Tomorrow, they could be fluid and responsive. The transformation has already begun. The question is: will your company lead it?
The journey to agent-enabled operations starts with clarity on business objectives. Leaders should begin by mapping their business’s critical processes. The most pressing opportunities often lie where cross-functional handoffs create friction or where high-value activities are slowed by system fragmentation. These pain points become the natural starting points for your agent deployment strategy.
Artificial intelligence has already proved that it can sound like a human, impersonate individuals and even produce recordings of someone speaking different languages. Now, a new feature from Microsoft will allow video meeting attendees to hear speakers “talk” in a different language with help from AI.
What Is Agentic AI? — from blogs.nvidia.com by Erik Pounds Agentic AI uses sophisticated reasoning and iterative planning to autonomously solve complex, multi-step problems.
The next frontier of artificial intelligence is agentic AI, which uses sophisticated reasoning and iterative planning to autonomously solve complex, multi-step problems. And it’s set to enhance productivity and operations across industries.
Agentic AI systems ingest vast amounts of data from multiple sources to independently analyze challenges, develop strategies and execute tasks like supply chain optimization, cybersecurity vulnerability analysis and helping doctors with time-consuming tasks.
When it comes to classroom edtech use, digital tools have a drastically different impact when they are used actively instead of passively–a critical difference examined in the 2023-2024 Speak Up Research by Project Tomorrow.
Students also outlined their ideal active learning technologies:
2024: The State of Generative AI in the Enterprise — from menlovc.com (Menlo Ventures) The enterprise AI landscape is being rewritten in real time. As pilots give way to production, we surveyed 600 U.S. enterprise IT decision-makers to reveal the emerging winners and losers.
This spike in spending reflects a wave of organizational optimism; 72% of decision-makers anticipate broader adoption of generative AI tools in the near future. This confidence isn’t just speculative—generative AI tools are already deeply embedded in the daily work of professionals, from programmers to healthcare providers.
Despite this positive outlook and increasing investment, many decision-makers are still figuring out what will and won’t work for their businesses. More than a third of our survey respondents do not have a clear vision for how generative AI will be implemented across their organizations. This doesn’t mean they’re investing without direction; it simply underscores that we’re still in the early stages of a large-scale transformation. Enterprise leaders are just beginning to grasp the profound impact generative AI will have on their organizations.
Business spending on generative AI surged 500% this year, hitting $13.8 billion — up from just $2.3 billion in 2023, according to data from Menlo Ventures released Wednesday.
OpenAI ceded market share in enterprise AI, declining from 50% to 34%, per the report.
Amazon-backed Anthropic doubled its market share from 12% to 24%.
Microsoft has quietly built the largest enterprise AI agent ecosystem, with over 100,000 organizations creating or editing AI agents through its Copilot Studio since launch – a milestone that positions the company ahead in one of enterprise tech’s most closely watched and exciting segments.
…
The rapid adoption comes as Microsoft significantly expands its agent capabilities. At its Ignite conference [that started on 11/19/24], the company announced it will allow enterprises to use any of the 1,800 large language models (LLMs) in the Azure catalog within these agents – a significant move beyond its exclusive reliance on OpenAI’s models. The company also unveiled autonomous agents that can work independently, detecting events and orchestrating complex workflows with minimal human oversight.
To understand the implications of AI agents, it’s useful to clarify the distinctions between AI, generative AI, and AI agents and explore the opportunities and risks they present to our autonomy, relationships, and decision-making.
… AI Agents: These are specialized applications of AI designed to perform tasks or simulate interactions. AI agents can be categorized into:
Tool Agents…
Simulation Agents..
While generative AI creates outputs from prompts, AI agents use AI to act with intention, whether to assist (tool agents) or emulate (simulation agents). The latter’s ability to mirror human thought and action offers fascinating possibilities — and raises significant risks.
Risks on the Horizon: ASL Levels The two key risks Dario is concerned about are:
a) cyber, bio, radiological, nuclear (CBRN)
b) model autonomy
These risks are captured in Anthropic’s framework for understanding AI Safety Levels (ASL):
1. ASL-1: Narrow-task AI like Deep Blue (no autonomy, minimal risk).
2. ASL-2: Current systems like ChatGPT/Claude, which lack autonomy and don’t pose significant risks beyond information already accessible via search engines.
3. ASL-3: Agents arriving soon (potentially next year) that can meaningfully assist non-state actors in dangerous activities like cyber or CBRN (chemical, biological, radiological, nuclear) attacks. Security and filtering are critical at this stage to prevent misuse.
4. ASL-4: AI smart enough to evade detection, deceive testers, and assist state actors with dangerous projects. AI will be strong enough that you would want to use the model to do anything dangerous. Mechanistic interpretability becomes crucial for verifying AI behavior.
5. ASL-5: AGI surpassing human intelligence in all domains, posing unprecedented challenges.
Anthropic’s if/then framework ensures proactive responses: if a model demonstrates danger, the team clamps down hard, enforcing strict controls.
Should You Still Learn to Code in an A.I. World? — from nytimes.com by Coding boot camps once looked like the golden ticket to an economically secure future. But as that promise fades, what should you do? Keep learning, until further notice.
Compared with five years ago, the number of active job postings for software developers has dropped 56 percent, according to data compiled by CompTIA. For inexperienced developers, the plunge is an even worse 67 percent.
“I would say this is the worst environment for entry-level jobs in tech, period, that I’ve seen in 25 years,” said Venky Ganesan, a partner at the venture capital firm Menlo Ventures.
For years, the career advice from everyone who mattered — the Apple chief executive Tim Cook, your mother — was “learn to code.” It felt like an immutable equation: Coding skills + hard work = job.
There’s a new coding startup in town, and it just MIGHT have everybody else shaking in their boots (we’ll qualify that in a sec, don’t worry).
It’s called Lovable, the “world’s first AI fullstack engineer.”
… Lovable does all of that by itself. Tell it what you want to build in plain English, and it creates everything you need. Want users to be able to log in? One click. Need to store data? One click. Want to accept payments? You get the idea.
Early users are backing up these claims. One person even launched a startup that made Product Hunt’s top 10 using just Lovable.
As for us, we made a Wordle clone in 2 minutes with one prompt. Only edit needed? More words in the dictionary. It’s like, really easy y’all.
From DSC: I have to admit I’m a bit suspicious here, as the “conversation practice” product seems a bit too scripted at times, but I post it because the idea of using AI to practice soft skills development makes a great deal of sense:
This is mind-blowing!
NVIDIA has introduced Edify 3D, a 3D AI generator that lets us create high-quality 3D scenes using just a simple prompt. And all the assets are fully editable!
Nearly every Fortune 500 company now uses artificial intelligence (AI) to screen resumes and assess test scores to find the best talent. However, new research from the University of Florida suggests these AI tools might not be delivering the results hiring managers expect.
The problem stems from a simple miscommunication between humans and machines: AI thinks it’s picking someone to hire, but hiring managers only want a list of candidates to interview.
Without knowing about this next step, the AI might choose safe candidates. But if it knows there will be another round of screening, it might suggest different and potentially stronger candidates.
In the last two years, the world has seen a lot of breakneck advancement in the Generative AI space, right from text-to-text, text-to-image and text-to-video based Generative AI capabilities. And all of that’s been nothing short of stepping stones for the next big AI breakthrough – AI agents. According to Bloomberg, OpenAI is preparing to launch its first autonomous AI agent, which is codenamed ‘Operator,’ as soon as in January 2025.
Apparently, this OpenAI agent – or Operator, as it’s codenamed – is designed to perform complex tasks independently. By understanding user commands through voice or text, this AI agent will seemingly do tasks related to controlling different applications in the computer, send an email, book flights, and no doubt other cool things. Stuff that ChatGPT, Copilot, Google Gemini or any other LLM-based chatbot just can’t do on its own.
In the enterprise of the future, human workers are expected to work closely alongside sophisticated teams of AI agents.
According to McKinsey, generative AI and other technologies have the potential to automate 60 to 70% of employees’ work. And, already, an estimated one-third of American workers are using AI in the workplace — oftentimes unbeknownst to their employers.
However, experts predict that 2025 will be the year that these so-called “invisible” AI agents begin to come out of the shadows and take more of an active role in enterprise operations.
“Agents will likely fit into enterprise workflows much like specialized members of any given team,” said Naveen Rao, VP of AI at Databricks and founder and former CEO of MosaicAI.
A recent report from McKinsey predicts that generative AI could unlock up to $2.6 to $4.4 annually trillion in value within product development and innovation across various industries. This staggering figure highlights just how significantly generative AI is set to transform the landscape of product development. Generative AI app development is driving innovation by using the power of advanced algorithms to generate new ideas, optimize designs, and personalize products at scale. It is also becoming a cornerstone of competitive advantage in today’s fast-paced market. As businesses look to stay ahead, understanding and integrating technologies like generative AI app development into product development processes is becoming more crucial than ever.
AI agents handle complex, autonomous tasks beyond simple commands, showcasing advanced decision-making and adaptability.
The Based AI Agent template by Coinbase and Replit provides an easy starting point for developers to build blockchain-enabled AI agents.
AI based agents specifically integrate with blockchain, supporting crypto wallets and transactions.
Securing API keys in development is crucial to protect the agent from unauthorized access.
What are AI Agents and How Are They Used in Different Industries?— from rtinsights.com by Salvatore Salamone AI agents enable companies to make smarter, faster, and more informed decisions. From predictive maintenance to real-time process optimization, these agents are delivering tangible benefits across industries.
We’ve added a new analysis tool. The tool helps Claude respond with mathematically precise and reproducible answers. You can then create interactive data visualizations with Artifacts.
We’re also introducing a groundbreaking new capability in public beta: computer use. Available today on the API, developers can direct Claude to use computers the way people do—by looking at a screen, moving a cursor, clicking buttons, and typing text. Claude 3.5 Sonnet is the first frontier AI model to offer computer use in public beta. At this stage, it is still experimental—at times cumbersome and error-prone. We’re releasing computer use early for feedback from developers, and expect the capability to improve rapidly over time.
A few days ago, Anthropic released Claude Computer Use, which is a model + code that allows Claude to control a computer. It takes screenshots to make decisions, can run bash commands and so forth.
It’s cool, but obviously very dangerous because of prompt injection.Claude Computer Use enables AI to run commands on machines autonomously, posing severe risks if exploited via prompt injection.
This blog post demonstrates that it’s possible to leverage prompt injection to achieve, old school, command and control (C2) when giving novel AI systems access to computers. … We discussed one way to get malware onto a Claude Computer Use host via prompt injection. There are countless others, like another way is to have Claude write the malware from scratch and compile it. Yes, it can write C code, compile and run it. There are many other options.
TrustNoAI.
And again, remember do not run unauthorized code on systems that you do not own or are authorized to operate on.
From a survey with more than 800 senior business leaders, this report’s findings indicate that weekly usage of Gen AI has nearly doubled from 37% in 2023 to 72% in 2024, with significant growth in previously slower-adopting departments like Marketing and HR. Despite this increased usage, businesses still face challenges in determining the full impact and ROI of Gen AI. Sentiment reports indicate leaders have shifted from feelings of “curiosity” and “amazement” to more positive sentiments like “pleased” and “excited,” and concerns about AI replacing jobs have softened. Participants were full-time employees working in large commercial organizations with 1,000 or more employees.
For a while now, companies like OpenAI and Google have been touting advanced “reasoning” capabilities as the next big step in their latest artificial intelligence models. Now, though, a new study from six Apple engineers shows that the mathematical “reasoning” displayed by advanced large language models can be extremely brittle and unreliable in the face of seemingly trivial changes to common benchmark problems.
The fragility highlighted in these new results helps support previous research suggesting that LLMs use of probabilistic pattern matching is missing the formal understanding of underlying concepts needed for truly reliable mathematical reasoning capabilities. “Current LLMs are not capable of genuine logical reasoning,” the researchers hypothesize based on these results. “Instead, they attempt to replicate the reasoning steps observed in their training data.”
We are bringing developer choice to GitHub Copilot with Anthropic’s Claude 3.5 Sonnet, Google’s Gemini 1.5 Pro, and OpenAI’s o1-preview and o1-mini. These new models will be rolling out—first in Copilot Chat, with OpenAI o1-preview and o1-mini available now, Claude 3.5 Sonnet rolling out progressively over the next week, and Google’s Gemini 1.5 Pro in the coming weeks. From Copilot Workspace to multi-file editing to code review, security autofix, and the CLI, we will bring multi-model choice across many of GitHub Copilot’s surface areas and functions soon.
In a groundbreaking study, researchers from Penn Engineering showed how AI-powered robots can be manipulated to ignore safety protocols, allowing them to perform harmful actions despite normally rejecting dangerous task requests.
What did they find ?
Researchers found previously unknown security vulnerabilities in AI-governed robots and are working to address these issues to ensure the safe use of large language models(LLMs) in robotics.
Their newly developed algorithm, RoboPAIR, reportedly achieved a 100% jailbreak rate by bypassing the safety protocols on three different AI robotic systems in a few days.
Using RoboPAIR, researchers were able to manipulate test robots into performing harmful actions, like bomb detonation and blocking emergency exits, simply by changing how they phrased their commands.
Why does it matter?
This research highlights the importance of spotting weaknesses in AI systems to improve their safety, allowing us to test and train them to prevent potential harm.
From DSC: Great! Just what we wanted to hear. But does it surprise anyone? Even so…we move forward at warp speeds.
From DSC:
So, given the above item, does the next item make you a bit nervous as well? I saw someone on Twitter/X exclaim, “What could go wrong?” I can’t say I didn’t feel the same way.
We’re also introducing a groundbreaking new capability in public beta: computer use.Available today on the API, developers can direct Claude to use computers the way people do—by looking at a screen, moving a cursor, clicking buttons, and typing text. Claude 3.5 Sonnet is the first frontier AI model to offer computer use in public beta. At this stage, it is still experimental—at times cumbersome and error-prone. We’re releasing computer use early for feedback from developers, and expect the capability to improve rapidly over time.
Per The Rundown AI:
The Rundown: Anthropic just introduced a new capability called ‘computer use’, alongside upgraded versions of its AI models, which enables Claude to interact with computers by viewing screens, typing, moving cursors, and executing commands.
… Why it matters: While many hoped for Opus 3.5, Anthropic’s Sonnet and Haiku upgrades pack a serious punch. Plus, with the new computer use embedded right into its foundation models, Anthropic just sent a warning shot to tons of automation startups—even if the capabilities aren’t earth-shattering… yet.
Also related/see:
What is Anthropic’s AI Computer Use? — from ai-supremacy.com by Michael Spencer Task automation, AI at the intersection of coding and AI agents take on new frenzied importance heading into 2025 for the commercialization of Generative AI.
New Claude, Who Dis? — from theneurondaily.com Anthropic just dropped two new Claude models…oh, and Claude can now use your computer.
What makes Act-One special? It can capture the soul of an actor’s performance using nothing but a simple video recording. No fancy motion capture equipment, no complex face rigging, no army of animators required. Just point a camera at someone acting, and watch as their exact expressions, micro-movements, and emotional nuances get transferred to an AI-generated character.
Think about what this means for creators: you could shoot an entire movie with multiple characters using just one actor and a basic camera setup. The same performance can drive characters with completely different proportions and looks, while maintaining the authentic emotional delivery of the original performance. We’re witnessing the democratization of animation tools that used to require millions in budget and years of specialized training.
Also related/see:
Introducing, Act-One. A new way to generate expressive character performances inside Gen-3 Alpha using a single driving video and character image. No motion capture or rigging required.
Google has signed a “world first” deal to buy energy from a fleet of mini nuclear reactors to generate the power needed for the rise in use of artificial intelligence.
The US tech corporation has ordered six or seven small nuclear reactors (SMRs) from California’s Kairos Power, with the first due to be completed by 2030 and the remainder by 2035.
After the extreme peak and summer slump of 2023, ChatGPT has been setting new traffic highs since May
ChatGPT has been topping its web traffic records for months now, with September 2024 traffic up 112% year-over-year (YoY) to 3.1 billion visits, according to Similarweb estimates. That’s a change from last year, when traffic to the site went through a boom-and-bust cycle.
Google has made a historic agreement to buy energy from a group of small nuclear reactors (SMRs) from Kairos Power in California. This is the first nuclear power deal specifically for AI data centers in the world.
Hey creators!
Made on YouTube 2024 is here and we’ve announced a lot of updates that aim to give everyone the opportunity to build engaging communities, drive sustainable businesses, and express creativity on our platform.
Below is a roundup with key info – feel free to upvote the announcements that you’re most excited about and subscribe to this post to get updates on these features! We’re looking forward to another year of innovating with our global community it’s a future full of opportunities, and it’s all Made on YouTube!
Today, we’re announcing new agentic capabilities that will accelerate these gains and bring AI-first business process to every organization.
First, the ability to create autonomous agents with Copilot Studio will be in public preview next month.
Second, we’re introducing ten new autonomous agents in Dynamics 365 to build capacity for every sales, service, finance and supply chain team.
10 Daily AI Use Cases for Business Leaders— from flexos.work by Daan van Rossum While AI is becoming more powerful by the day, business leaders still wonder why and where to apply today. I take you through 10 critical use cases where AI should take over your work or partner with you.
Emerging Multi-Modal AI Video Creation Platforms The rise of multi-modal AI platforms has revolutionized content creation, allowing users to research, write, and generate images in one app. Now, a new wave of platforms is extending these capabilities to video creation and editing.
Multi-modal video platforms combine various AI tools for tasks like writing, transcription, text-to-voice conversion, image-to-video generation, and lip-syncing. These platforms leverage open-source models like FLUX and LivePortrait, along with APIs from services such as ElevenLabs, Luma AI, and Gen-3.
From DSC: Great…we have another tool called Canvas. Or did you say Canva?
Introducing canvas — from OpenAI A new way of working with ChatGPT to write and code
We’re introducing canvas, a new interface for working with ChatGPT on writing and coding projects that go beyond simple chat. Canvas opens in a separate window, allowing you and ChatGPT to collaborate on a project. This early beta introduces a new way of working together—not just through conversation, but by creating and refining ideas side by side.
Canvas was built with GPT-4o and can be manually selected in the model picker while in beta. Starting today we’re rolling out canvas to ChatGPT Plus and Team users globally. Enterprise and Edu users will get access next week. We also plan to make canvas available to all ChatGPT Free users when it’s out of beta.
The way Americans buy homes is changing dramatically.
New industry rules about how home buyers’ real estate agents get paid are prompting a reckoning among housing experts and the tech sector. Many house hunters who are already stretched thin by record-high home prices and closing costs must now decide whether, and how much, to pay an agent.
A 2-3% commission on the median home price of $416,700 could be well over $10,000, and in a world where consumers are accustomed to using technology for everything from taxes to tickets, many entrepreneurs see an opportunity to automate away the middleman, even as some consumer advocates say not so fast.
The Great Mismatch — from the-job.beehiiv.com. by Paul Fain Artificial intelligence could threaten millions of decent-paying jobs held by women without degrees.
Women in administrative and office roles may face the biggest AI automation risk, find Brookings researchers armed with data from OpenAI. Also, why Indiana could make the Swiss apprenticeship model work in this country, and how learners get disillusioned when a certificate doesn’t immediately lead to a good job.
…
A major new analysisfrom the Brookings Institution, using OpenAI data, found that the most vulnerable workers don’t look like the rail and dockworkers who have recaptured the national spotlight. Nor are they the creatives—like Hollywood’s writers and actors—that many wealthier knowledge workers identify with. Rather, they’re predominantly women in the 19M office support and administrative jobs that make up the first rung of the middle class.
“Unfortunately the technology and automation risks facing women have been overlooked for a long time,” says Molly Kinder, a fellow at Brookings Metro and lead author of the new report. “Most of the popular and political attention to issues of automation and work centers on men in blue-collar roles. There is far less awareness about the (greater) risks to women in lower-middle-class roles.”
introducing swarm: an experimental framework for building, orchestrating, and deploying multi-agent systems. ?https://t.co/97n4fehmtM
Is this how AI will transform the world over the next decade? — from futureofbeinghuman.com by Andrew Maynard Anthropic’s CEO Dario Amodei has just published a radical vision of an AI-accelerated future. It’s audacious, compelling, and a must-read for anyone working at the intersection of AI and society.
But if Amodei’s essay is approached as a conversation starter rather than a manifesto — which I think it should be — it’s hard to see how it won’t lead to clearer thinking around how we successfully navigate the coming AI transition.
Given the scope of the paper, it’s hard to write a response to it that isn’t as long or longer as the original. Because of this, I’d strongly encourage anyone who’s looking at how AI might transform society to read the original — it’s well written, and easier to navigate than its length might suggest.
That said, I did want to pull out a few things that struck me as particularly relevant and important — especially within the context of navigating advanced technology transitions.
And speaking of that essay, here’s a summary from The Rundown AI:
Anthropic CEO Dario Amodei just published a lengthy essay outlining an optimistic vision for how AI could transform society within 5-10 years of achieving human-level capabilities, touching on longevity, politics, work, the economy, and more.
The details:
Amodei believes that by 2026, ‘powerful AI’ smarter than a Nobel Prize winner across fields, with agentic and all multimodal capabilities, will be possible.
He also predicted that AI could compress 100 years of scientific progress into 10 years, curing most diseases and doubling the human lifespan.
The essay argued AI could strengthen democracy by countering misinformation and providing tools to undermine authoritarian regimes.
The CEO acknowledged potential downsides, including job displacement — but believes new economic models will emerge to address this.
He envisions AI driving unprecedented economic growth but emphasizes ensuring AI’s benefits are broadly distributed.
Why it matters:
As the CEO of what is seen as the ‘safety-focused’ AI lab, Amodei paints a utopia-level optimistic view of where AI will head over the next decade. This thought-provoking essay serves as both a roadmap for AI’s potential and a call to action to ensure the responsible development of technology.
However, most workers remain unaware of these efforts. Only a third (33%) of all U.S. employees say their organization has begun integrating AI into their business practices, with the highest percentage in white-collar industries (44%).
… White-collar workers are more likely to be using AI. White-collar workers are, by far, the most frequent users of AI in their roles. While 81% of employees in production/frontline industries say they never use AI, only 54% of white-collar workers say they never do and 15% report using AI weekly.
… Most employees using AI use it for idea generation and task automation. Among employees who say they use AI, the most common uses are to generate ideas (41%), to consolidate information or data (39%), and to automate basic tasks (39%).
Selling like hotcakes: The extraordinary demand for Blackwell GPUs illustrates the need for robust, energy-efficient processors as companies race to implement more sophisticated AI models and applications. The coming months will be critical to Nvidia as the company works to ramp up production and meet the overwhelming requests for its latest product.
Here’s my AI toolkit — from wondertools.substack.com by Jeremy Caplan and Nikita Roy How and why I use the AI tools I do — an audio conversation
1. What are two useful new ways to use AI?
AI-powered research: Type a detailed search query into Perplexity instead of Google to get a quick, actionable summary response with links to relevant information sources. Read more of my take on why Perplexity is so useful and how to use it.
Notes organization and analysis: Tools like NotebookLM, Claude Projects, and Mem can help you make sense of huge repositories of notes and documents. Query or summarize your own notes and surface novel connections between your ideas.
AI’s Trillion-Dollar Opportunity — from bain.com by David Crawford, Jue Wang, and Roy Singh The market for AI products and services could reach between $780 billion and $990 billion by 2027.
At a Glance
The big cloud providers are the largest concentration of R&D, talent, and innovation today, pushing the boundaries of large models and advanced infrastructure.
Innovation with smaller models (open-source and proprietary), edge infrastructure, and commercial software is reaching enterprises, sovereigns, and research institutions.
Commercial software vendors are rapidly expanding their feature sets to provide the best use cases and leverage their data assets.
Accelerated market growth. Nvidia’s CEO, Jensen Huang, summed up the potential in the company’s Q3 2024 earnings call: “Generative AI is the largest TAM [total addressable market] expansion of software and hardware that we’ve seen in several decades.”
And on a somewhat related note (i.e., emerging technologies), also see the following two postings:
Surgical Robots: Current Uses and Future Expectations — from medicalfuturist.com by Pranavsingh Dhunnoo As the term implies, a surgical robot is an assistive tool for performing surgical procedures. Such manoeuvres, also called robotic surgeries or robot-assisted surgery, usually involve a human surgeon controlling mechanical arms from a control centre.
Key Takeaways
Robots’ potentials have been a fascination for humans and have even led to a booming field of robot-assisted surgery.
Surgical robots assist surgeons in performing accurate, minimally invasive procedures that are beneficial for patients’ recovery.
The assistance of robots extend beyond incisions and includes laparoscopies, radiosurgeries and, in the future, a combination of artificial intelligence technologies to assist surgeons in their craft.
“Working with the team from Proto to bring to life, what several years ago would have seemed impossible, is now going to allow West Cancer Center & Research Institute to pioneer options for patients to get highly specialized care without having to travel to large metro areas,” said West Cancer’s CEO, Mitch Graves.
Obviously this workflow works just as well for meetings as it does for lectures. Stay present in the meeting with no screens and just write down the key points with pen and paper. Then let NotebookLM assemble the detailed summary based on your high-level notes. https://t.co/fZMG7LgsWG
In a matter of months, organizations have gone from AI helping answer questions, to AI making predictions, to generative AI agents. What makes AI agents unique is that they can take actions to achieve specific goals, whether that’s guiding a shopper to the perfect pair of shoes, helping an employee looking for the right health benefits, or supporting nursing staff with smoother patient hand-offs during shifts changes.
In our work with customers, we keep hearing that their teams are increasingly focused on improving productivity, automating processes, and modernizing the customer experience. These aims are now being achieved through the AI agents they’re developing in six key areas: customer service; employee empowerment; code creation; data analysis; cybersecurity; and creative ideation and production.
…
Here’s a snapshot of how 185 of these industry leaders are putting AI to use today, creating real-world use cases that will transform tomorrow.
AI Video Tools You Can Use Today— from heatherbcooper.substack.com by Heather Cooper The latest AI video models that deliver results
AI video models are improving so quickly, I can barely keep up! I wrote about unreleased Adobe Firefly Video in the last issue, and we are no closer to public access to Sora.
No worries – we do have plenty of generative AI video tools we can use right now.
Kling AI launched its updated v1.5 and the quality of image or text to video is impressive.
Hailuo MiniMax text to video remains free to use for now, and it produces natural and photorealistic results (with watermarks).
Runway added the option to upload portrait aspect ratio images to generate vertical videos in Gen-3 Alpha & Turbo modes.
…plus several more
Advanced Voice is rolling out to all Plus and Team users in the ChatGPT app over the course of the week.
While you’ve been patiently waiting, we’ve added Custom Instructions, Memory, five new voices, and improved accents.
Top Software Engineering Newsletters in 2024 — from ai-supremacy.com by Michael Spencer Including a very select few ML, AI and product Newsletters into the mix for Software Engineers.
This is an article specifically for the software engineers and developers among you.
In the past year (2023-2024) professionals are finding more value in Newsletters than ever before (especially on Substack).
As working from home took off, the nature of mentorship and skill acquisition has also evolved and shifted. Newsletters with pragmatic advice on our careers it turns out, are super valuable. This article is a resource list. Are you a software developer, work with one or know someone who is or wants to be?