“Retrieval practice” is a learning strategy where we focus on getting information out. Through the act of retrieval, or calling information to mind, our memory for that information is strengthened and forgetting is less likely to occur. Retrieval practice is a powerful tool for improving learning without more technology, money, or class time.

On this website (and in our free Retrieval Practice Guide), we discuss how to use retrieval practice to improve learning. Established by nearly 100 years of research, retrieval practice is a simple and powerful technique to transform teaching and learning.

In order to improve learning, we must approach it through a new lens – let’s focus not on getting information “in,” but on getting information “out.”

 

 

What is retrieval practice?
Retrieval practice is a strategy in which bringing information to mind enhances and boosts learning. Deliberately recalling information forces us to pull our knowledge “out” and examine what we know.

For instance, recalling an answer to a science question improves learning to a greater extent than looking up the answer in a textbook. And having to actually recall and write down an answer to a flashcard improves learning more than thinking that you know the answer and flipping the card over prematurely.

Often, we think we’ve learned some piece of information, but we come to realize we struggle when we try to recall the answer. It’s precisely this “struggle” or challenge that improves our memory and learning – by trying to recall information, we exercise or strengthen our memory, and we can also identify gaps in our learning.

Note that cognitive scientists used to refer to retrieval practice as “the testing effect.” Prior research examined the fascinating finding that tests (or short quizzes) dramatically improve learning. More recently, researchers have demonstrated that more than simply tests and quizzes improve learning: flashcards, practice problems, writing prompts, etc. are also powerful tools for improving learning. 

Whether this powerful strategy is called retrieval practice or the testing effect, it is important to keep in mind that the act of pulling information “out” from our minds dramatically improves learning, not the tests themselves. In other words retrieval is the active process we engage in to boost learning; tests and quizzes are merely methods to promote retrieval.

 

 

Also on that site:

 

 

Learn more about this valuable book with our:

 

 

Also on that site:

 

 

Excerpt from the Interleaved Mathematics Practice guide (on page 8 of 13):

Interleaved practice gives students a chance to choose a strategy.
When practice problems are arranged so that consecutive problems cannot be solved by the same strategy, students are forced to choose a strategy on the basis of the problem itself. This gives students a chance to both choose and use a strategy.

Interleaved practice works.
In several randomized control studies, students who received mostly interleaved practice scored higher on a final test than did students who received mostly blocked practice.

 

 

 



From DSC:
Speaking of resources regarding learning…why don’t we have posters in all of our schools, colleges, community colleges, universities, vocational training centers, etc. that talk about the most effective strategies to learn about new things?



 

 

 

Research roundup: 4 new reports on what’s working for blended-learning practitioners — from christenseninstitute.org by Luis Flores

Excerpt:

At the start of the year, we published a blog post on interesting research from 2017 related to innovative approaches to school design. Even though we aren’t even half-way through 2018, there are already several insightful reports on blended and personalized learning from this year that are worth highlighting.

These reports examined various tools and approaches to implement blended and personalized learning models, as well as the potential impact these models could have on students and teachers. From examining how schools implemented their models sustainably to recommending methods to best support teachers, these are informative reports for anyone interested in implementing blended and personalized learning models in their schools.

1. Digital math tool produces gains in student achievement
2. Personalized learning can be implemented sustainably
3. PD-rich blended-learning plans increase chances of success
4. Ensure that teachers create, and design strategies for, their goals

 

 

 

 

Make it Stick: The Science of Successful Learning— by Peter C. Brown, Henry L Roediger III, and Mark A. McDaniel

Some of the key points and learning strategies they mention in the preface:

  • The most effective learning strategies are not intuitive
  • Spaced repetition of key ideas and the interleaving of different but related topics are two excellent teaching/learning strategies

 

 

Some the key points and learning strategies they mention in the first chapter:

  • When they talk about learning they mean acquiring knowledge and skills and having them readily available from memory so you can make sense of future problems and opportunities.
  • There are some immutable aspects of learning that we can probably all agree on:
    1. To be useful, learning requires memory, so what we’ve learned is till there later when we need it.
    2. We need to keep learning and remembering all our lives.
    3. Learning is an acquired skill and most effective strategies are counterintuitive
  • Learning is deeper and more durable when it’s effortful
  • We are poor judges of when we are learning well and when we’re not
  • Rereading text and massed practice (i.e., cramming) of a skill or new knowledge are by far the preferred study strategies of learners of all stripes, but they”re also among the least productive. Rereading and cramming give rise to feeling of fluency that are taken to be signs of mastery, but for true mastery or durability these strategies are largely a waste of time.
  • Retrieval practice — recalling facts or concepts or events from memory — is a more effective learning strategy than reviewing by rereading
    • Flashcards are a simple example
    • Retrieval strengthens the memory and interrupts forgetting
    • A single simple quiz after reading a text or hearing a lecture produces better learning and remembering that rereading the text of reviewing lecture notes.
  • Periodic practice arrest forgetting, strengthens retrieval routes, and is essential for hanging onto the knowledge you want to gain.
  • Space out practice and interleave the practice of 2 or more subjects, retrieval is harder and feels less productive, but the effort produces longer lasting learning and enables more versatile application of it in later settings.
  • Trying to solve a problem before being taught the solution leads to better learning, even when errors are made in the attempt.
  • Learning styles are not supported by the empirical research.
  • When you’re adept at extracting the underlying principles or “rules” that differentiate types of problems, you’re more successful at picking the right solutions in unfamiliar situations. This skill is better acquired through interleaved and varied practice than massed practice.
  • In virtually all areas of learning, you build better mastery when you use testing as a tool to identify and bring up your areas of weakness.
  • All learning requires a foundation of prior knowledge.

 

If you practice elaboration, there’s no known limit to how much you can learn. Elaboration is the process of giving new material meaning by expressing it in your own words and connecting it with what you already know. The more you can explain about the way your new learning relates to your prior knowledge, the stronger your grasp of the new learning will be, and the more connections you create that will help you remember it later.***

 

“When learning is hard, you’re doing important work.”

 

“Making mistakes and correcting them builds the bridges to advanced learning.”

 

Learning is stronger when it matters.^^^

 

  • One of the most striking research findings is the power of active retrieval — testing — to strengthen memory, and the more effortful the retrieval, the stronger the benefit.
    .
  • The act of retrieving learning from memory has 2 profound benefits:
    1. It tells you what you know and don’t know, and therefore where to focus further study
    2. Recalling what you have learned causes your brain to re-consolidate the memory
      .
  • To learn better and remember longer, [use]:
    • various forms of retrieval practice, such as low-stakes quizzing and self-testing
    • spacing out practice
    • interleaving the practice of different but related topics or skills
    • trying to solve a problem before being taught the solution
    • and distilling the underlying principles or rules that differentiate types of problems

 

One of the best habits a learner can instill in herself is regular self-quizzing to recalibrate her understanding of what she does and does not know. 

 

Brown, P. C., Roediger III, H. L., & McDaniel, M. A. (2014).
Make It Stick: The Science of Successful Learning.
Cambridge, MA: The Belknap Press of Harvard University Press.
Retrieved from https://www.amazon.com/Make-Stick-Science-Successful-Learning/dp/0674729013

 

 

*** This quote reminds me of what turned Quin Schultze’ learning around. With Quin’s permission, the following excerpt is from Quentin Schultze’s solid book, Communicate like a True Leader (pages 35 & 36)

 

 

 

During the beginning of my sophomore year, I started reviewing each day’s class notes after classes were over. I soon realized how little I recalled even of that day’s lectures and discussions. It dawned on me that normal note-taking merely gave me the impression that I was learning. I implemented a strategy that revolutionized my learning, launched me successfully into graduate school, helped me become a solid teacher, equipped me to be a productive researcher-writer, and made it possible for me to be an engaging speaker.

I not only reviewed my notes daily. I rewrote them from scratch within a couple of hours of each class meeting. I used my actual course notes as prompts to recall more of the lecture and to help me organize my own reactions to the material. My notes expanded. My retention swelled.

My revised notes became a kind of journal of my dialogue with the instructor and the readings. I integrated into my revised course notes my daily reading notes, reworking them into language that was meaningful to me and preparing to ask the instructor at the next class anything that I was uncertain about. From then on I earned nearly straight A’s with far less cramming for exams.

Moreover, I had begun journaling about my learning — one of the most important communication skills. I became a real learner by discovering how to pay attention to others and myself.

In a broad sense, I learned how to listen.

 

^^^ This quote explains why it is so important to answer the first question a learner asks when approaching a new lesson/topic/lecture/etc.:

  • Why is this topic relevant?
    i.e., why is this topic important and worthy of my time to learn it?

 

 

Why Professors Doubt Education Research — from edsurge.com by Jeff Young

Excerpts:

You found that professors really care about their teaching, and yet they are skeptical of education research. It sounds like a lot of people ended up teaching the way that they had been taught, or the way that they felt good as a student in classes they had had.

That’s right. People sometimes ignore the research precisely because they care about teaching. Different faculty arrive at the point where they’re teaching college students from wildly different experiences of their own. Some have wanted since they were small children to be professors at a university, and some fell into it later in a career.

For faculty who think that research is a good way to learn how to teach, they will devour the literature on learning sciences. They’ll reach out to experts across a number of disciplines and within their own discipline to try and learn what the best way to teach is

For faculty who believe that teaching is an art, that it is just something that you develop with experience and time, that you can’t learn from a book, you need to learn by doing more or learn from your students, no amount of exposure to learning science research is going to disrupt their sense that this is something they learn by doing, or that they need to follow their gut on.

Do you have any advice for someone who wants to change someone’s mind to either adopt or consider more of this evidence-based research?

People can always change their perspective. If you’re trying to communicate the value of a technology or an approach, or even of learning science or education research as a field, you have to start with the person you’re speaking to. They may come to that conversation with a sense of, “I know that people get PhDs in education. People get PhDs in curriculum design, and I’ve never even taken a class where we’ve talked about curriculum design. I would like to know what they know.”

Then there are people who will say, “I’ve been teaching since I was a graduate student. My students are very happy with the teaching. I feel pretty good about my teaching. I understand that you have a PhD in curriculum design, but I don’t really need that.”

You need to approach those two different faculty members differently, understanding that there are some people who are interested in hearing about evidence-based practices, and just pointing them towards the resources is great.

Excerpt from the question:
What about your own teaching? I’m curious. Are you someone that tries different techniques that are based on research?

There is so much literature, and there are so many right ways, and there are so many recommendations that incorporating all of them into your practice at the same time is literally impossible. Many of them are contradictory. You have to choose a suite that you’re adhering to, because you can’t do the others if you’re doing these. Trying to embody best practices while teaching is really complex. It’s a skillset that you develop. You develop with time, and instruction, and you can master, but you’re always going to have to continue to perfect it.

 

 

Also see:

Personalized Faculty Development: Engaging Networks, Empowering Individuals — from er.educause.edu by Jill Leafstedt

Excerpts:

During the meeting, I chose to spend my time focused solely on sessions in the Faculty Development and Engagement track. My goal: return to my home campus energized and ready to tackle the age-old problem of how to move faculty from being content experts into dynamic educators.

Luckily for me, I was not the only one looking for this inspiration. The faculty development sessions were packed with people trying to answer questions such as, “Why don’t faculty want help?” or “Why don’t faculty attend my workshops?” On the whole, the sessions reaffirmed my belief that faculty development does not happen in a workshop, nor does it happen through training. Improving teaching is a long, messy, reflective process that must be approached from multiple angles with many entry points.

Sound challenging? It is, but there is reason to be hopeful; our colleagues are working hard to find and share answers. Two themes came through loud and clear from the sessions I attended. First, meet faculty where they are. Don’t expect them to come to you ready to learn; go to them and start where they are. Second, build networks for ongoing learning.

 

From DSC:
Both of the above articles present a HUGE issue in terms of improving the level of teaching and learning. Both articles seem to be saying that anyone interested in really improving the teaching and learning that’s going on needs to meet with each individual faculty member in order to meet them where they are at. When you have hundreds of faculty members plus an over-flowing job plate that’s asking you to wear numerous hats, that’s a very tall order indeed.

 

 

 

 

Why Students Forget—and What You Can Do About It — from edutopia.org by Youki Terada
Our brains are wired to forget, but there are research-backed strategies you can use to make your teaching stick.

Excerpt:

5 Teacher Strategies
When students learn a new piece of information, they make new synaptic connections. Two scientifically based ways to help them retain learning is by making as many connections as possible—typically to other concepts, thus widening the “spiderweb” of neural connections—but also by accessing the memory repeatedly over time.

Which explains why the following learning strategies, all tied to research conducted within the past five years, are so effective:

  1. Peer-to-peer explanations: When students explain what they’ve learned to peers, fading memories are reactivated, strengthened, and consolidated. This strategy not only increases retention but also encourages active learning (Sekeres et al., 2016).
  2. The spacing effect: Instead of covering a topic and then moving on, revisit key ideas throughout the school year. Research shows that students perform better academically when given multiple opportunities to review learned material. For example, teachers can quickly incorporate a brief review of what was covered several weeks earlier into ongoing lessons, or use homework to re-expose students to previous concepts (Carpenter et al., 2012; Kang, 2016).
  3. Frequent practice tests: Akin to regularly reviewing material, giving frequent practice tests can boost long-term retention and, as a bonus, help protect against stress, which often impairs memory performance. Practice tests can be low stakes and ungraded, such as a quick pop quiz at the start of a lesson or a trivia quiz on Kahoot, a popular online game-based learning platform. Breaking down one large high-stakes test into smaller tests over several months is an effective approach (Adesope, Trevisan, & Sundararajan, 2017; Butler, 2010; Karpicke, 2016).
  4. Interleave concepts: Instead of grouping similar problems together, mix them up. Solving problems involves identifying the correct strategy to use and then executing the strategy. When similar problems are grouped together, students don’t have to think about what strategies to use—they automatically apply the same solution over and over. Interleaving forces students to think on their feet, and encodes learning more deeply (Rohrer, 2012; Rohrer, Dedrick, & Stershic, 2015).
  5. Combine text with images: It’s often easier to remember information that’s been presented in different ways, especially if visual aids can help organize information. For example, pairing a list of countries occupied by German forces during World War II with a map of German military expansion can reinforce that lesson. It’s easier to remember what’s been read and seen, instead of either one alone (Carney & Levin, 2002; Bui & McDaniel, 2015).

So even though forgetting starts as soon as learning happens—as Ebbinghaus’s experiments demonstrate—research shows that there are simple and effective strategies to help make learning stick.

 

 

 

Augmented Reality: Everything You Need to Know for 2018 — from isl.co by Josh Strupp

Excerpt:

Here’s the trade-off: what we gain in development ease-of-use (native SDKs, integration into existing workflows) and performance enhancements (load times, battery efficiency, render quality, integration with native apps), we lose in universality; naturally, each company wants you staying within its own ecosystem.

In a nutshell: new AR platforms from today’s tech giants are aimed at reducing technical headache so you can focus on creating amazing experiences… but they also want you creating more apps for their respective mobile ecosystems.

 

 

 

 

 

 

This AR App Teaches You How To Play The Piano — from vrscout.com by Steve Ip & Sydney Wuu
AR piano learning system with improvised jam sessions.

Excerpt:

Learning to play the piano is getting an immersive upgrade with a new augmented reality (AR) piano training software called Music Everywhere. The HoloLens app aims to help students of all talent levels build fundamental music theory and performance skills. While traditional piano lessons can cost upwards of $100 per hour, Music Everywhere is free on the Microsoft store and offers a cost effective tutoring solution that provides students with immediate interaction feedback, making it differ greatly from watching a video tutorial.

Founded in 2017, Music Everywhere began at Carnegie Mellon’s ETC with Seth Glickman, Fu Yen Hsiao, and Byunghwan Lee realizing the nascent technology could be used for skills training. The app was the first Augmented Reality music learning platform to take first prize in Microsoft’s HoloLens Developer Contest, beating more than one-thousand submissions.

 

 

 

 

Making Virtual Reality a Reality in Today’s Classrooms — from thejournal.com by Meredith Thompson

Excerpt:

The market for virtual reality applications is growing at a rapid pace, and is expected to double in the next five years (Bolkan, 2017). As the cost of equipment falls and schools have greater access to technology, there is great interest in virtual reality as an educational tool. A small but growing group of educators have started to integrate virtual reality in their classrooms, with promising results (Castaneda, Cechony & Bautista, 2017). We reached out to teachers and administrators who are currently using virtual reality in their classrooms to hear their perspectives and practical strategies for infusing this resource into their classrooms.

Teachers have creative ideas for how to incorporate immersive education in current classrooms: how to select activities, how to set up the classroom, how to get support during the activity and how to transport devices. Teachers also shared their ideas for future applications of VR, including how to deepen the learning experience and to expand the reach of these technologies to a greater population of students.

Here we share three vignettes of three different approaches: a social studies class in a suburban school district, a district-wide perspective from an urban school district and a class designed entirely around understanding and implementing VR for other classrooms. We also share how we are using these ideas to inform our own project in designing a collaborative immersive virtual reality educational game for introductory high school biology.

 

 

3 best practices from VR implementation across departments — from ecampusnews.com by Andrew Woodberry
Professors across many disciplines are embracing VR technology as an integral part of their learning tools

Excerpts:

VR is already being used for many real-world applications–hiring, training, marketing/sales, medical purposes, entertainment, and more–and is worth considering for many different university departments.

At German University in Cairo, architecture students used our platform to create tours of historical Cairo buildings, complete with educational hotspot overlays on particularly interesting features. This multimedia approach educated students without them having to travel to the buildings. It also made for a more “stickier” learning experience for the students involved in creating it.

At Emporia State University, for example, the forensic science students view virtual crime scenes recorded at the Kansas Bureau of Investigation in Topeka. Forensic-science students can look for clues and learn facts via voiceover, mimicking an actual crime-scene inquiry quite impressively.

 

 

Augmented and virtual reality products to get excited about in 2018 — from gearbrain.com by Alistair Charlton
CES 2018 showed us the way forward for AR and VR this year

Excerpt:

Just as televisions and driverless cars have become part of the furniture at the CES technology show, so too have virtual and augmented reality headsets.

Although the momentum behind VR’s growth slowed in 2017 – the industry seemingly unsure if it should progress with a technology destined to remain a niche – AR is being welcomed into the spotlight with open arms.

Here are six AR and VR highlights from CES 2018.

 

 

Looking to boost AR and VR technology, University of Washington establishes center in Seattle — from edscoop.com by Emily Tate
The UW Reality Lab will focus on “core research advances” in augmented and virtual reality.

Excerpt:

The University of Washington, hoping to get ahead in the burgeoning field of augmented reality (AR) and virtual reality (VR), has launched the UW Reality Lab, a center for research, education and innovation in AR and VR.

One of the first research centers in the world built for AR and VR projects, the UW Reality Lab is also located in Seattle — a hotspot for technology companies, from behemoths like Amazon and Microsoft to startups still trying to get off the ground.

 

“We’re seeing some really compelling and high-quality AR and VR experiences being built today,” Steve Seitz, center co-lead and Allen School professor, said in the university’s statement. “But, there are still many core research advances needed to move the industry forward — tools for easily creating content, infrastructure solutions for streaming 3D video, and privacy and security safeguards — that university researchers are uniquely positioned to tackle.”

 

 

 

Augmented Reality: Is it the Future of eLearning

Excerpt:

Why Augmented Reality is Important for eLearning
According to a report released by CCS Insight, augmented and virtual reality hardware is set to become a $4 billion market by 2018. Let’s take a look at how augmented reality can be leveraged in the online learning space:

Simulated working environments
One of the most common advantages of online learning is the ability to form an environment in which the users have the freedom to experiment. As people usually learn from their mistakes, when they work in a consequence-free environment, they are most likely to remember the right way to do things.

Support Gamification
As online learning management systems (LMSs) use gamification widely, augmented reality can be directly applied. In AR reality training module, employees will be rewarded for effectively performing their routine tasks in the right way, which will eventually improve performance.

Immersive Learning Environments
Using a tablet, smartphone for the online training software means the users are constantly distracted with emails, notifications from social channels etc. This is one of the reasons why elearning content uses interactive multimedia elements to engage students. With augmented reality, elearning courses can be supported with 360° video, which will engage the user and remove distractions for them.

Motion tracking
Motion and gesture tracking are part of the AR experience. They are commonly leveraged for choosing menu items or engaging with video game-based environments.

In the online learning domain, LMSs can use this technology to track learner’s progress to ensure that they are achieving the set targets without fail. This will boost real-time training performance and improve interactivity with instant feedback.

Simply put, with augmented reality the possibilities are endless. With the growing number of Bring Your Own Device (BYOD) workplaces, it is expected that employees and learners will be delighted to use augmented reality.

 

 

Virtual Reality And Beyond: The Future Of Music Experiences — from hypebot.com by Jen Sako

Excerpt:

The Musical Future of VR
VR technology is still in its earliest stages, but musicians are already seeing how they will be able to connect to fans and make news ones without the expense of touring. In artificial environments, bands can invite music lovers into their world.

But beyond the obvious entertainment factor, VR has the potential to become a tool for education. Music students could enter a studio space using VR gear for lessons and practice. The immediate feedback provided and game-like atmosphere may keep students more motivated and engaged. Imagine methods for teaching that include ways to slow down and loop difficult parts or bringing in the composer for lessons.

VR can also connect music lovers to the many people behind the scenes involved in producing the music they enjoy. Listeners can learn about the industry and how a song comes to life. They’ll understand why it’s important to play a part in sustaining the music business.

For this technology to become a reality in itself inside consumers’ listening and learning spaces, obstacles need addressing. The hardware is still pricey, bulky and requires a power source. Apps need creators who will need more in the way of artificial intelligence.

 

 

ARiA, The AR Conference At MIT, Is The Anti-CES — from forbes.com by Charlie Fink

Excerpt:

“The ability to combine digital information with the real world is going to disrupt every business model, transform human/machine interaction, and generate innovative use cases across every discipline and in every vertical including education, healthcare, manufacturing,” Werner continued. “I see ARiA as the TED for AR, where the best minds come together to solve real work problems and share ideas to capitalize on the huge opportunity.”

 

Broadcast news and sports now routinely lay data, graphics, and animation onto the physical world. AR has become ubiquitous in ways that have nothing to do with smart glasses. “AR is on the verge.

 

 

2017 Augmented Reality Year in Review — from wikitude.com

 

 

 

Microsoft Education unveils new Windows 10 devices starting at $189, Office 365 tools for personalized learning, and curricula to ignite a passion for STEM — from blogs.windows.com by Yusuf Mehdi

Excerpt:

In regards to mixed reality for immersive learning:

  • Pearson – the world’s largest education company – will begin rolling out in March curriculum that will work on both HoloLens and Windows Mixed Reality immersive VR headsets. These six new applications will deliver seamless experiences across devices and further illustrate the value of immersive educational experiences.
  • We are expanding our mixed media reality curriculum offerings through a new partnership with WGBH’s Bringing the Universe to America’s Classrooms project****, for distribution nationally on PBS LearningMedia™. This effort brings cutting-edge Earth and Space Science content into classrooms through digital learning resources that increase student engagement with science phenomena and practices.
  • To keep up with growing demand for HoloLens in the classroom we are committed to providing affordable solutions. Starting on January 22, we are making available a limited-time academic pricing offer for HoloLens. To take advantage of the limited-time academic pricing offer, please visit, hololens.com/edupromo.

 

 

 

Why Don’t Educators in Higher Ed Take Education Classes? — from insidehighered.com by Jillian Joyce
If we’re in higher education to educate, Jillian Joyce asks, what keeps college teachers from learning more about teaching?

Excerpt (emphasis DSC):

If we’re in higher education to educate, what keeps college teachers from learning more about teaching? You’re busy. You’ve been doing this a long time. It’s really up to the students to learn the material. You’re already an excellent lecturer. Anyone can teach; it’s not that complicated. While those phrases begin to scratch the surface, I propose we take a step back to examine the internal narratives and pervading ideologies that surround our ideas about teaching at the university.

Three Myths
In her 2003 text Practice Makes Practice, Deborah P. Britzman, a professor at York University in Toronto, describes three myths that summon teachers to the field of education: 1) everything depends upon the teacher, 2) the teacher is the expert and 3) teachers are self-made. While Britzman’s audience is largely teachers at the primary and secondary levels, these myths abound in higher education, as well.

Similarly, professors at a university are typically required to wear two hats: one hat as a researcher and another as a teacher. But only the researcher hat is fashionable. It brings in money for the university, it looks good on a curriculum vitae and it promotes the climb up the academic latter.

In contrast, the teacher hat is slumpy. It’s necessary but not pretty. It’s the kind of hat you wear grocery shopping hoping no one will recognize you. The fancy hat promotes the educator as the expert, while the slumpy hat is seen as “just” teaching. This distinction fosters the idea that teaching is easy and requires little effort. The uncomfortable adage “those who can’t do, teach” suggests that research is “doing,” while teaching is a second-rate activity.

 


From DSC:
Teaching effectively is a very complex, deep, and difficult task to do well. Those who say it’s easy have likely never tried doing it themselves. Also, in higher education, doing research is one thing, but teaching well is a whole different set of (often undervalued) skills.

My alma mater (Northwestern University) prides itself on faculty who are doing leading edge research. According to this page, there was $676.5 million in annual sponsored research back in 2016-2017. (Brief insert from DSC: For those who say higher ed isn’t a business, how would you respond to this kind of thing? Or this?*) I remember taking courses from researchers like these and many of them shouldn’t have been teaching at all — they weren’t nearly worth the cost of tuition. I also remember taking courses from graduate students who likely hadn’t had any coursework on how to teach either.

The tragedy here is that it’s the students who are paying increasingly huge tuition bills to attend Northwestern and other such universities and colleges. This is not right. Let’s lift up the craft of teaching and let those who do research, research. Researchers can relay the highlights of their research to those who have taken the time to work on their teaching-related skills. 

My vote? If you don’t care about your teaching, you shouldn’t be teaching at all.

As a relevant side question here: What would you say to your doctor if they didn’t keep learning and growing in their skillset?!? How would you feel about that?

If you are teaching, you should have taken some coursework in how to teach — and how people learn — and you should be required to attend several professional development related events: Every. Single. Year.

 


 

DSC: Higher education not a business you say? Are you sure about that!?
The University of Alabama is paying its football coach, Nick Saban, more than $11 million this season, which puts him ahead of every coach in the professional National Football League. Clemson University coach Dabo Sweeney will earn $8.5 million, and the University of Michigan’s Jim Harbaugh $7 million, not including money from endorsements.

 


 

 

Developing a learning culture: A framework for the growth of teaching expertise — from facultyfocus.com by Nancy Chick, Natasha Kenny, Carol Berenson, Carol Johnson, David Keegan, Emma Read, & Leslie Reid

Excerpt (emphasis DSC):

Many postsecondary institutions have started to explore what it means to develop and demonstrate teaching expertise, recognizing not only the complexities of teaching and of documenting the experiences of teaching, but also that teaching expertise is developed through a learning process that continues over time (Hendry & Dean, 2002; Kreber, 2002). Our framework (see below graphic) for this growth of teaching expertise draws from the scholarly literature related to postsecondary teaching and learning to demonstrate that teaching expertise involves multiple facets, habits of mind (or ways of knowing and being), and possible developmental activities.

The Structure of the Framework
Our framework (Figure 1) introduces three foundational habits of mind—inclusive, learning-centered, and collaborative ways of knowing and being—that ground five interwoven and non-hierarchical facets of teaching expertise:

  • teaching and supporting learning
  • professional learning and development
  • mentorship
  • research, scholarship, and inquiry
  • educational leadership

 

Figure 1: Conceptualization of a framework for the development of teaching expertise

 

 

 

 

This framework is “written in pencil” in that it is meant to be shared, adapted, and used according to the needs of local contexts. The intention is to provide a scholarly framework for recognizing the breadth of characteristics involved in the development of teaching expertise in postsecondary contexts across all career stages.

 

 

 

 

 
 

Technology from “Harry Potter” Movies Brings Magic of Brain into Focus — from scientificamerican.com by Bahar Gholipour
Software lets scientists explore the brain in 3-D and perform “virtual dissections”

Excerpt:

The same techniques that generate images of smoke, clouds and fantastic beasts in movies can render neurons and brain structures in fine-grained detail.

Two projects presented yesterday at the 2017 Society for Neuroscience annual meeting in Washington, D.C., gave attendees a sampling of what these powerful technologies can do.

“These are the same rendering techniques that are used to make graphics for ‘Harry Potter’ movies,” says Tyler Ard, a neuroscientist in Arthur Toga’s lab at the University of Southern California in Los Angeles. Ard presented the results of applying these techniques to magnetic resonance imaging (MRI) scans.

The methods can turn massive amounts of data into images, making them ideally suited to generate brain scans. Ard and his colleagues develop code that enables them to easily enter data into the software. They plan to make the code freely available to other researchers.

 

 

 

 

 

Expo: Towards Rapid VR Prototyping — from medium.com by Jon Wade

Excerpt:

After several cycles of development, it became clear that getting our process into VR as early as possible was essential. This was difficult to do within the landscape of VR tooling. So, at the beginning of 2017, we began developing features for early-stage VR prototyping in a tool named “Expo.”


Start Prototyping in VR Now
We developed Expo because the tools for collaborative prototyping did not exist at the start of this year. Since then, the landscape has dramatically improved and there are many tools providing prototyping workflows with no requirement to do your own development:

  • Facebook Spaces and SteamVR Home allow teams to create quick doodles and play with props together.
  • MasterpieceVR has professional-grade sculpting tools and the critical feature of multi-user interaction.
  • Mindshow allows a single user to pantomime and record avatars and objects interacting to create shareable vignettes.

 

 

 

 

Google’s new ‘Poly’ service makes it easier to build VR and AR apps — from mashable.com by Karissa Bell

Excerpt:

It’s no secret that one of the biggest issues holding back virtual and augmented reality is the lack of content.

Even as bigger studios and companies are sinking more and more money into VR and AR development, it’s still difficult for smaller, independent, developers to get started. A big part of the problem is that AR and VR apps require developers to create a ton of 3D objects, often an overwhelming and time-consuming process.

Google is hoping to fix that, though, with its new service called Poly, an online library of 3D objects developers can use in their own apps.

The model is a bit like Flickr, but for VR and AR developers rather than photographers. Anyone can upload their own 3D creations to the service and make them available to others via a Creative Commons license, and any developer can search and download objects for their own apps and games.

 

 

 

The Ivory Tower Can’t Keep Ignoring Tech — from nytimes.com by Cathy O’Neil

Excerpt:

We need academia to step up to fill in the gaps in our collective understanding about the new role of technology in shaping our lives. We need robust research on hiring algorithms that seem to filter out people with mental health disorders, sentencing algorithms that fail twice as often for black defendants as for white defendants, statistically flawed public teacher assessments or oppressive scheduling algorithms. And we need research to ensure that the same mistakes aren’t made again and again. It’s absolutely within the abilities of academic research to study such examples and to push against the most obvious statistical, ethical or constitutional failures and dedicate serious intellectual energy to finding solutions. And whereas professional technologists working at private companies are not in a position to critique their own work, academics theoretically enjoy much more freedom of inquiry.

 

 

There is essentially no distinct field of academic study that takes seriously the responsibility of understanding and critiquing the role of technology — and specifically, the algorithms that are responsible for so many decisions — in our lives.

 

 

There’s one solution for the short term. We urgently need an academic institute focused on algorithmic accountability. First, it should provide a comprehensive ethical training for future engineers and data scientists at the undergraduate and graduate levels, with case studies taken from real-world algorithms that are choosing the winners from the losers. Lecturers from humanities, social sciences and philosophy departments should weigh in.

 

 

 

Somewhat related:

 

 

 

WE ARE NOT READY FOR THIS! Per Forrester Research: In US, a net loss of 7% of jobs to automation — *in 2018*!

Forrester predicts that AI-enabled automation will eliminate 9% of US jobs in 2018 — from forbes.com by Gil Press

Excerpt (emphasis DSC):

A new Forrester Research report, Predictions 2018: Automation Alters The Global Workforce, outlines 10 predictions about the impact of AI and automation on jobs, work processes and tasks, business success and failure, and software development, cybersecurity, and regulatory compliance.

We will see a surge in white-collar automation, half a million new digital workers (bots) in the US, and a shift from manual to automated IT and data management. “Companies that master automation will dominate their industries,” Forrester says. Here’s my summary of what Forrester predicts will be the impact of automation in 2018:

Automation will eliminate 9% of US jobs but will create 2% more.
In 2018, 9% of US jobs will be lost to automation, partly offset by a 2% growth in jobs supporting the “automation economy.” Specifically impacted will be back-office and administrative, sales, and call center employees. A wide range of technologies, from robotic process automation and AI to customer self-service and physical robots will impact hiring and staffing strategies as well as create a need for new skills.

 

Your next entry-level compliance staffer will be a robot.

 

From DSC:

Are we ready for a net loss of 7% of jobs in our workforce due to automation — *next year*? Last I checked, it was November 2017, and 2018 will be here before we know it.

 

***Are we ready for this?! ***

 

AS OF TODAY, can we reinvent ourselves fast enough given our current educational systems, offerings, infrastructures, and methods of learning?

 

My answer: No, we can’t. But we need to be able to — and very soon!

 

 

There are all kinds of major issues and ramifications when people lose their jobs — especially this many people and jobs! The ripple effects will be enormous and very negative unless we introduce new ways for how people can learn new things — and quickly!

That’s why I’m big on trying to establish a next generation learning platform, such as the one that I’ve been tracking and proposing out at Learning from the Living [Class] Room. It’s meant to provide societies around the globe with a powerful, next generation learning platform — one that can help people reinvent themselves quickly, cost-effectively, conveniently, & consistently! It involves providing, relevant, up-to-date streams of content that people can subscribe to — and drop at any time. It involves working in conjunction with subject matter experts who work with teams of specialists, backed up by suites of powerful technologies. It involves learning with others, at any time, from any place, at any pace. It involves more choice, more control. It involves blockchain-based technologies to feed cloud-based learner profiles and more.

But likely, bringing such a vision to fruition will require a significant amount of collaboration. In my mind, some of the organizations that should be at the table here include:

  • Some of the largest players in the tech world, such as Amazon, Google, Apple, IBM, Microsoft, and/or Facebook
  • Some of the vendors that already operate within the higher ed space — such as Salesforce.com, Ellucian, and/or Blackboard
  • Some of the most innovative institutions of higher education — including their faculty members, instructional technologists, instructional designers, members of administration, librarians, A/V specialists, and more
  • The U.S. Federal Government — for additional funding and the development of policies to make this vision a reality

 

 

The Living [Class] Room -- by Daniel Christian -- July 2012 -- a second device used in conjunction with a Smart/Connected TV

 

 

Chris Lenihan from DiscoverDataScience.org emailed me to let me know about a recently published guide on their site that’s entitled, “A Guide for Women in STEM”. Discover Data Science partnered with Heather Ambler from the University of Pittsburgh and Aiden Ford from the University of Connecticut to help produce this guide. Per Chris, the guide covers :

  • An overview of the challenges women can face in STEM fields
  • Outlines reasons women should pursue a STEM related career
  • Provides tips on how to encourage girls at an early age to follow their passion
  • Gives the reader extensive links to pre-college programs available for women, followed by a listing of over 30 scholarship options available to women pursuing STEM related degrees

Chris mentioned that both current and aspiring students can benefit from this information as they look for inspiration in their careers. Their mission is to serve students by delivering accurate, high quality information presented in a simple, clean format and they hope that this guide achieves that.

Check it out. >>


Here’s a sample excerpt from that guide:



Pre-College Programs for Women in STEM

CURIE Academy is a one-week summer residential program for high school girls who excel in math and science. The focus is on juniors and seniors who may not have had prior opportunities to explore engineering, but want to learn more about the many opportunities in engineering in an interactive atmosphere.

G.R.A.D.E. CAMP is a week-long day program designed specifically for entering 8th to 12th grade girls who want to find out what engineering is all about through “hands-on” experience. G.R.A.D.E. CAMP emphasizes career exposure rather than career choice, so you can come just to experience something new.

Girlgeneering’s goal of a girls-only camp is to increase the interest of high ability young women in a career in engineering by combating stereotypes, creating connections, reducing the issue of competition for resources with boys, and demonstrating the real-world social impact of engineering. This one-week day camp will introduce middle school young women to the field of engineering by showing how engineering is connected to personal issues, social concerns, and community interests.

It’s a Girl Thing is a residential camp for girls. The goals are to provide girls with strong role models and dispel myths and misconceptions about science and careers in science. Campers experience university life, hands-on classes and recreational activities. In the past we have offered classes ranging from Nano Energy to Animal Science.

Smith Summer Science and Engineering Program (SSEP) is a four-week residential program for exceptional young women with strong interests in science, engineering and medicine. Each July, select high school students from across the country and abroad come to Smith College to do hands-on research with Smith faculty in the life and physical sciences and in engineering.

Survey the World of Engineering – is a one-week day camp that will allow you to develop your creativity as well as provide you with the opportunity to meet and speak with working engineers. For part of the camp, you will work on campus with different engineering departments, learning and completing hands-on projects to better understand the breadth and variety of different engineering fields. For the remainder of the camp, you will visit various corporate engineering plants such as General Electric, Procter & Gamble, and Northrop Grumman Xetron to meet professional engineers and see their work in action.

 



Addendums on 10/26

 


 

 

Top 10 Strategic Technology Trends for 2018 — from Gartner Research

Summary

  • The intelligent digital mesh is a foundation for future digital business and its ecosystems. To create competitive advantage, enterprise architecture and technology innovation leaders must evaluate these top trends to identify opportunities that their organizations can exploit.

Key Findings

  • Artificial intelligence (AI) delivers value to every industry, enabling new business models. It does so by supporting key initiatives such as customer engagement, digital production, smart cities, self-driving cars, risk management, computer vision and speech recognition.
  • As people, places, processes and “things” become increasingly digitalized, they will be represented by digital twins. This will provide fertile ground for new event-driven business processes and digitally enabled business models and ecosystems.
  • The way we interact with technology will undergo a radical transformation over the next five to 10 years. Conversational platforms, augmented reality, virtual reality and mixed reality will provide more natural and immersive interactions with the digital world.
  • A digital business is event-centric, which means it must be continuously sensing and adapting. The same applies to the security and risk infrastructure that supports it, which must focus on deceiving potential intruders and predicting security events.

Table of Contents

Analysis

Trend No. 1: AI Foundation
Today’s AI Is Narrow AI

Trend No. 2: Intelligent Apps and Analytics
Augmented Analytics Will Enable Users to Spend More Time Acting on Insights

Trend No. 3: Intelligent Things
Swarms of Intelligent Things Will Work Together

Trend No. 4: Digital Twins
Digital Twins Will Be Linked to Other Digital Entities

Trend No. 5: Cloud to the Edge
Edge Computing Brings Distributed Computing Into the Cloud Style

Trend No. 6: Conversational Platforms
Integration With Third-Party Services Will Further Increase Usefulness

Trend No. 7: Immersive Experience
VR and AR Can Help Increase Productivity

Trend No. 8: Blockchain
Blockchain Offers Significant Potential Long-Term Benefits Despite Its Challenges

Trend No. 9: Event-Driven Model
Events Will Become More Important in the Intelligent Digital Mesh

Trend No. 10: Continuous Adaptive Risk and Trust
Barriers Must Come Down Between Security and Application Teams

Gartner Recommended Reading

 

 



Also see:

 


 

 

 

 

7 Things You Should Know About Research on Active Learning Classrooms — from library.educause.edu

Excerpt:

Research into active learning classrooms (ALCs)—spaces explicitly designed to support and promote this kind of learning and pedagogy—is expanding. This research provides educators with insights about how best to implement active learning pedagogies and support learners in ALCs. Studying how pedagogy and physical space can influence each other, researchers assess how well design elements work and how they affect learning. Higher education needs to know why active learning works, how it works best, and how these methods can be adopted more widely. Research that shows the efficacy of ALCs helps advance the use of such spaces and informs improvements in the design of learning spaces.

That item also mentions:
A Guide to Teaching in the Active Learning Classroom

 

 

7 Things You Should Know About AR/VR/MR — from library.educause.edu

Excerpt:

Augmented reality can be described as experiencing the real world with an overlay of additional computer generated content. In contrast, virtual reality immerses a user in an entirely simulated environment, while mixed or merged reality blends real and virtual worlds in ways through which the physical and the digital can interact. AR, VR, and MR offer new opportunities to create a psychological sense of immersive presence in an environment that feels real enough to be viewed, experienced, explored, and manipulated. These technologies have the potential to democratize learning by giving everyone access to immersive experiences that were once restricted to relatively few learners.

 

 

 

 
© 2024 | Daniel Christian